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Abstract

The analysis of extremes in financial return series is often based on the Peaks-Over-Threshold
(POT) model. This model assumes independent and identically distributed observations and a
Poisson process is accordingly used to characterize the occurrence of extreme events. However,
stylized facts such as clustered extremes and serial dependence typically violate the assumption
of independence. In this paper we propose an alternative approach to overcome these difficulties
by considering the stochastic intensity of the point process of exceedances over a threshold in the
framework of irregularly spaced data. The main idea is to model the time between exceedances
through an Autoregressive Conditional Duration (ACD) model, while the marks are still being
modeled by generalized Pareto distributions. The main advantage of this approach is its capability
to capture the short-term behavior of extremes without involving an arbitrary stochastic volatil-
ity model or a prefiltration of the data, which would certainly affect the estimation. We make
use of the proposed model to obtain an improved estimate for the Value at Risk. The model is
then benchmarked to various competing approaches like Engle and Marianellis̀ CAViaR or the
GARCH-EVT model. Finally we present a comparative empirical illustration to transaction data
from Bayer AG, a blue chip stock from the German stock market index DAX, the DAX index itself
and a hypothetical portfolio of international equity indexes .

JEL classification: C22, C58, F30.

Keywords: Extreme value theory, autoregressive conditional duration, value at risk, self-exciting
point process, conditional intensity.

1. Introduction

In recent years there has been a noticeable increase in the frequency and impact of extreme
events and financial crises. These events range from currency crashes (East Asia in 1997, Russia
in 1998, Argentina in 2001), to liquidity crises (LTCM in 1998), to stock market crashes (Black
Monday in 1987, Dot.com in 2000), and to the US subprime market spillovers from 2007 through
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to 2009. An important aspect of these extreme events is that their impact is exacerbated by simul-
taneous occurrence in a multiple class of assets.

Critical questions are being asked concerning some of the quantitative methods used in risk
management under the Basel II proposals. Why do extreme events occur? What measures are
being taken to deal with extreme crises? Can researchers study the mechanics of extreme events in
history and learn how to avoid them in the future? Both theoretical and more practically oriented
questions are on the actual agenda of academics, practitioners and regulators when the task is
to understand the dynamics of asset markets under stress (see Embrechts, 2009 and references
therein).

The estimation of the Value at Risk (VaR) and related risk measures is a current topic of interest
in finance, for which many approaches of varying sophistication have been derived. According to
Chavez-Demoulin et al. (2005) two main approaches can be distinguished: the time series and
the extreme value approach. The first emphasizes modeling the temporal features (e.g., volatility
clustering and fat tails) with ARCH-type and stochastic volatility models. However, the study of
extreme dependence may reveal contrasts which are obscured when concentrating on examining
only the conditional second moment of a time series. Interestingly, and unlike the situation for
GARCH processes (see Davis and Mikosch, 2009), there is no extremal clustering for stochastic
volatility processes in either the light- or heavy-tailed cases. That is, large values of the processes
do not come in clusters, which means that the large sample behavior of maxima is the same as
that of the maxima of the associated iid sequence. On the other hand, Mikosch (2003) showed in
a simulation study that for the GARCH case the expected cluster size in a set of various log-return
series is smaller than for the fitted GARCH model, i.e., there is less dependence in the tails for the
returns and volatilities than for the prescribed GARCH model. While these models imply some
information about extreme events, still little is known about the extremes per se.

The extreme value approach makes inferences on the VaR using results from Extreme Value
Theory (EVT), which only focuses on the tail of the distribution (see Embrechts et al. 1997 for an
introduction). The majority of the approaches on EVT for VaR estimation concern the estimation
of unconditional quantiles (see for example Danielsson and De Vries, 2000, Coles, 2001 and
Cotter and Dowd, 2006). An exception is the work of McNeil and Frey (2000), which addresses
the conditional quantile problem and proposes a method for applying EVT to the conditional return
distribution by using a two-stage method, combining GARCH models for forecasting volatility and
EVT techniques applied to the residuals from the GARCH analysis. Although this methodology
works quite well in practice it has major drawbacks, as addressed by Mikosch (2003). Thus, one
should be cautious with the interpretation of the results of this method, since there is no theory in

2



the extremal clustering behavior based on the residuals of a GARCH model.
A novel form to deal with the cluster on extremes is to use a cluster point process version of

Peaks Over Threshold (POT) model introduced preliminarily in McNeil et al. (2005) and Chavez-
Demoulin et al. (2005), where the clusters of extreme data are modeled as self-exciting point
processes without involving a prefiltration of data. The main characteristic of these models is that
the intensity of occurrence of extreme events can depend on past extreme events and the size of
the exceedances, thus allowing more realistic models.

In this paper we concentrate on a different alternative. We model the stochastic intensity of
the point process of exceedances within the framework of irregularly spaced data. Contrary to the
classical POT methodology, where the time of occurrence of the extreme events is modeled, the
proposed methodology is able to model the inter-exceedance times between extreme events. To
this end, we use a technique similar to an Autoregressive Conditional Duration (ACD) model (see
Engle and Russell, 1998 for more reference), while the marks still being modeled by generalized
Pareto distributions. Like the GARCH models, the ACD models and their alternatives (see Engle
and Russell, 1998; Ghysels and Jasiak, 1998; Engle, 2000; Zhang et al., 2001; Russell and Engle,
2005; Bauwens and Hautsch, 2006) have proven to be very useful in capturing the clustering
effects. For this reason, it seems natural to model the cluster behavior of extreme observations by
means of this class of processes.

The main contribution of this paper from the point of view of extreme value theory is that we
are able to capture the short-term behavior of extremes without involving an arbitrary stochastic
volatility model or the prefiltration of the data, which certainly impacts the measures of risk.
Furthermore and contrary to the models proposed in McNeil et al. (2005) and Chavez-Demoulin
et al. (2005), whose self-exciting functions are restricted to monotone decreasing functions, the
models proposed in this paper allow hazard functions that are both monotonically decreasing and
increasing. This has a logical interpretation in periods of financial turmoil, where the VaR typically
increases in an initial period, then becomes close to constant before finally decreasing. To the best
of our knowledge, this is the first research which takes the incidence of the inter-exceedance times
and models for irregularly spaced data in extreme value models into account.

The results of the application to the stock market data from Bayer AG, the DAX index and a
hypothetical portfolio indicate that the estimation of such models can be straightforward, derived
through conditionals intensities. Different models were proposed, having in mind the simplicity
of the structure of the conditional intensities. The empirical results show that characteristics as-
sociated with previous extreme losses as well as the time between these extreme events have a
significant impact on the dynamic aspects and the size of future extreme events. In a VaR context
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the results of our backtesting procedure, which dynamically adjusts quantiles to incorporate the
new information daily, allows us to statistically conclude that the models proposed are suitable for
the estimation of different risk measures as the VaR, according to the restriction imposed by Basel
Committee on Banking Supervision (1996, 2006). Further, in comparison with others competitive
models, in most of the cases the ACD-POT models outperform the basic specifications of CAViar
models introduced by Engle and Manganelli (2004). Finally, the ACD-POT and the two-stage
GARCH-EVT methodology (McNeil and Frey, 2000) were the only methods that eradicate the
threat of VaR violation clustering in a great many situations.

This paper is organized as follows. In the next section we give a brief motivation for modeling
the inter-exceedances times between extreme events. In section 3 we outline relevant aspects of
the classical POT model and describe the ACD-POT model theory that is central to the paper
and discuss a conditional generalized Pareto distribution based approach for the exceedances. In
addition, we make use of the models proposed to obtain an expression and its estimate for the VaR
one day ahead predictive distribution of the returns, conditionally on the past and current data.
In section 4 the models are applied to transactions data from Bayer AG, the DAX index and a
hypothetical portfolio. Conclusions and proposals for future work are resumed in section 5.

2. Motivation

In the following we will explain our motivation in investigating extreme events in a stock
market as a marked point process of exceedances. The classical POT model for iid data assumes
that if a threshold u has been chosen highly enough then the exceedances over this threshold, the
extreme events, occur in time according to a homogeneous Poisson process. In addition, the size of
the excess returns over the threshold, the mark sizes, are independently and identically distributed
according to the generalized Pareto distribution (GPD). Nevertheless, the result of more than half
a century of empirical studies on financial time series indicates that this is not the case.

Figure 1 shows in the top panel the negative daily percentage log returns of Bayer shares
between 2 January 1990 and 18 January 2008, and the times and sizes of the negative daily per-
centage log returns exceeding a threshold u = 1,5. Observe that this contradicts the classical
model assumption of no cluster at the extremes. Indeed, under a homogeneous Poisson process
the inter-exceedance times should be independent exponential random variables. The lower left
picture shows an exponential probability plot for the inter-event times, these are clearly far from
exponential, giving evidence against a Poisson process of exceedances. Furthermore, the auto-
correlogram plot suggests clustering of the inter-exceedance times. This hypothesis is moreover
reaffirmed by the Ljung-Box statistic using 10 lags. The null hypothesis of white noise is easily
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rejected with the Ljung-Box statistic of 217.63 well above the critical value of 18.307 at the 5%
level, rejecting the Null hypothesis.

Since extreme events are inherently irregularly spaced in time and their inter-exceedance times
provide strong evidence of correlation, it seems natural to study the timing of transactions as
an ACD model. Since the introduction of this model by Engle and Russell (1998), a plethora
of modifications and alternatives have been proposed. Zhang et al. (2001) introduce a threshold
ACD (TACD). Drost and Werker (2004) provide a method for obtaining efficient estimators of the
ACD model with no need to specify the distribution. Fernandes and Grammig (2006) introduce
the augmented ACD model, a very general model that covers almost all the existing ones. Meitz
and Teräsvirta (2006) introduce smooth transition ACD models and testing evaluation procedures.
Alternative models based on latent variables are the Stochastic Conditional Duration (SCD) model
of Bauwens et al. (2004) and the Stochastic Volatility Duration (SVD) model of Ghysels et al.
(2004).

Often, there will be additional information associated with the arrival times, as for example the
stock market prices, which depending on the economic question at hand may be of interest. In the
literature of point process, this extra information is called mark, as they identify or further describe
the event which occurred. In extreme value theory, the point of time is the time at which an extreme
event occurs, and the marks are the size of exceedances given a high threshold. For instance, Engle
(2000) introduce a framework to estimate the dynamics of events (that are inherently irregularly
spaced) and the associated prices conditional on the times. Ghysels and Jasiak (1998) propose
to model the volatility of irregularly spaced data. Russell and Engle (2005) propose to use the
ACD model for durations and the Autoregressive Conditional Multinomial (ACM) model for the
conditional distribution of the discrete price changes.

Following the same direction as the last three models, in the next section we shall propose an
extension of the classical ACD model to the inter-exceedance times between extreme events that
is more flexible and provides a better adjustment than the existent classical extreme value models
for VaR prediction, considering that all the temporal dependence in the inter-exceedance times
is captured by a conditional mean function. Although, the immediate application is to financial
transactions data we believe the model could prove useful in a variety of other settings, e.g. prices
from energy markets.

3. Methodology

The use of EVT in risk management is a fairly recent innovation, but there is a much longer
history of its use in the natural science and the insurance industry. Embrechts et al. (1997) survey
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Figure 1: Upper left panel shows daily percentage loss data of Bayer between 02.01.1990 and 18.01.2008. Upper
right panel displays the 732 largest losses (i.e. exceedances). Lower left panel shows a QQ-plot of inter-exceedance
times against an exponential reference distribution. Finally, the lower right panel displays the autocorrelogram for the
inter-exceedance times for the exceedances.

the mathematical theory of EVT in an excellent way and discuss its applications to both financial
and insurance risk management. In this section we briefly outline the theoretical aspects of EVT
and highlight some aspects that are specific to financial data. As a consequence, modifications and
extensions of a direct EVT approach turn out to be beneficial.

3.1. Classical extreme value theory

Suppose {Yt}n
t=1 are random variables with distribution function F which belongs to the max-

imum domain of attraction of Hξ ,µ,σ . Then Hξ ,µ,σ is a generalized extreme value distribution

Hξ ,µ,σ (y) =


exp
{
−
(

1+ξ
y−µ

σ

)−1/ξ
}

ξ 6= 0,

exp
{
−exp

(
−y−µ

σ

)}
ξ = 0,

(1)
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where 1+ ξ y > 0 , ξ ,µ ∈ R and σ > 0 are the shape, location and scale parameter respectively.
Classical EVT is sometimes applied directly, for example by fitting this distribution to the annual
or monthly maxima of a financial series and much historical work was devoted to this approach
(e.g. Smith, 2003). From a modern viewpoint, however, the classical approach is too narrow to be
applied to a wide range of problems.

An alternative approach is to pursue the idea to interpret exceedances over thresholds as a
point process.(Smith, 1989) view a point process N as a random distribution of indistinguishable
points in a defined state space. We display this idea in Figure 2. For instance, the basic model for
threshold exceedances in extreme value theory is based on constructing a two-dimensional point
process {(ti,yi)}T

i=1 with state space T ×Y = [0,1)× (y,∞). The time events ti are the time t of
the i-th peak exceedance and we shall refer to this process as the ground process, while yi−u is the
value of the exceedances for a sufficiently high threshold u and we will call this process the process
of marks (in Figure 2 these are observations t = 2,6,8, . . . or equivalently i = 1,2,3, . . .). For iid
observations1, each data point has the same chance to exceed the threshold, and therefore, the two
dimensional point process will look like as a non-homogeneous Poisson process with intensity
defined for all subsets of the form A = [t1, t2)× (y,∞), where t1 and t2 are times of occurrence of
extreme events. This leads to the following representation

λ (t,y) = λ (y) =
1
σ

(
1+ξ

y−µ

σ

)−1/ξ−1

+

, (2)

where y+ = max(y,0) and µ ,σ ,ξ are precisely the parameters of the generalized extreme value
distribution.

The intensity measure of the subset A for any y ≥ u may be expressed in the form of an one-
dimensional Poisson process with intensity

τ (y) =
ˆ

∞

y
λ (s)ds =− lnHξ ,µ,σ (y) .

If we accept that the point process of exceedances is one-dimensional Poisson with intensity
τ > 0, then the process has independent increments, i.e., the number of events ti that occur in
disjoint time intervals are mutually independent, which implies lack of memory in the evolution

1A sufficient condition for the process is already its (weak) stationarity together with the condition that there are
asymptotically no clusters among the high-level exceedances.
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Figure 2: Illustration of high-level exceedances represented as a marked point process.

of the process. In addition, the number of extreme events ti in any interval of length (t2− t1) ≥ 0
is distributed as Poisson with mean

ˆ t2

t1

ˆ
∞

y
λ (s)dsdt = τ (y)(t2− t1).

Indeed, if the time scale in (1) is measured, for example in months, then the corresponding version
of (2) is precisely the probability that a set A = [t1, t2)× (y,∞) is empty, or in other words, that the
maximum of this month is smaller than u. Another important result of extreme value theory is the
limiting conditional probability that Y > u+ y given Y > u

τ(u+ y)
τ(u)

=

(
1+

ξ y
σ +ξ (u−µ)

)−1/ξ

= Gξ ,β (x),

which is just the survival function of the GPD, i.e., Ḡ = 1−G, with scaling parameter β = σ +

ξ (u−µ) for 0≤ y < yF . Here yF is the right endpoint with values yF = ∞ if ξ > 0 and yF =−β/ξ

if ξ < 0.
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3.2. The marked point process viewpoint of extreme value theory

A more general framework for EVT, which allows for time-dependent behavior, is based on
viewing the high level of exceedances as a marked point processes (MPP). In many stochastic pro-
cess models, a marked point process arises as the component that carries the information about the
events t in time or space of objects that may themselves have a stochastic structure and stochastic
dependency relations. In this way, dependence on covariates or other time dependent variables
may be incorporated into the model.

In this paper we define a MPP N as a set of observations, occurrence times and marks {(ti,yi)}T
i=1

on the space T ×Y , whose history Ht = ({t1,y1} , . . . ,{tt−1,yt−1}) consists only of the occur-
rence times and marks {t1,y1} , . . . ,{tt−1,yt−1} up to time t but not including t. Moreover, we
define a point process Ng “the ground process” which refers to the stochastic process of the inter-
exceedance times. This point process has a conditional density function p(t |Ht) and its corre-
sponding survival distribution function S (t |Ht). The conditional (finite) intensity function (or
hazard function) for the ground process Ng is given by

λg (t |Ht) =
p(t |Ht)

S (t |Ht)
, (3)

while the conditional intensity function for the MPP N is given by

λ (t,y |Ht) = λg(t |Ht) f (y |Ht , t) , (4)

where f (y |Ht , t) is the density function of the marks conditional on t and Ht .
Thus, the conditional intensity function with respect to the internal history Ht determines the

probability structure of N uniquely. Furthermore, we say that a MPP N on T ×Y has independent
marks, if given the ground process Ng the marks yi are mutually independent random variables such
that its distribution depends only on the corresponding location ti. In addition, we define a MPP
as having unpredictable marks for T , if the distribution of the marks at ti is independent of the
locations and marks

{(
t j,y j

)}
for which t j < ti. For a more formal introduction to marked point

processes we refer to Daley and Vere-Jones (2003, p. 246).
According to our definition of MPP, the marks are conditionally independent of the associated

ground process. Therefore, the product of mark densities has to be simply multiplied with the
likelihood of the ground process. Letting N be a MPP on [t0,T )×Y for some finite positive T

and let (t1,y1) , . . . ,
(
tN(T ),yN(T )

)
be a realization of N, we can obtain the log-likelihood L of such
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a realization in terms of the conditional densities or intensities as

L =
N(T )

∑
i=1

log pi (ti |Ht)+
N(T )

∑
i=1

log fi (yi |Ht , t) (5)

=
N(T )

∑
i=1

logλg (ti |Ht)−
ˆ T

t0
λg (s |Ht)ds+

N(T )

∑
i=1

log fi (yi |Ht , t) .

Observe that an alternative description of the non-homogeneous Poisson process (2) is by
rewriting this as a special case of a MPP in terms of a ground process Ng with rate of the one-
dimensional Poisson process of exceedances of the level u, i.e., τ = λg(t |Ht) = − lnHξ ,µ,σ (u),

and a GPD function for the marks f (y |Ht , t) = 1
β

(
1+ξ

y−u
β

)−1/ξ−1

λ (t,y) = τ
1
β

(
1+ξ

y−u
β

)−1/ξ−1

. (6)

This is exactly the idea that we want to explore in the next section. We will concentrate on
models where the conditional intensity for the ground process will be parametrized in terms of
an interval between two consecutive extreme events xi = ti− ti−1 such that the impact of a duration
between successive events depends upon the number of intervening extreme events. The main
area of application of these models has traditionally been in modeling of high frequency financial
data.Their structure, however, would also seem appropriate for modeling extreme events and the
tremors that follow these.

3.3. The autoregressive conditional duration peaks over threshold model (ACD-POT)

As mentioned in the introduction, exceedances of a high threshold for daily financial returns
do (in contrast to iid data) not necessarily occur according to a homogeneous Poisson process.
Thus, the classical POT model is not directly applicable to financial return data.

Therefore, we consider autoregressive conditional duration models for the conditional intensity
of the ground process λg(t | Ht). In particular, we propose a set of models, which allow for
autocorrelation between inter-exceedance times, clustered extremes and non iid exceedances or
marks size.

Following Engle and Russell (1998) we define a model for the conditional intensity of the
ground point process of exceedances depending only on a fixed number of the most recent inter-
exceedance times xi = ti− ti−1. Let ψi be the expectation of the i-th inter-exceedance time given
by

E(x | xi−1, . . . ,x1) = ψi (xi−1, . . . ,x1;θ)≡ ψi, (7)
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where θ is a parameter vector. We assume that ψi corresponds to the ACD class of models. In
general, the assumption is based on the fact that the standardized durations

εi =
xi

ψi
(8)

are iid random variables. Thus, the key idea is that the time dependence between the inter-
exceedance times can be subsumed in their conditional expectations ψi, in such way that xi

ψi
is

independent and identically distributed. To derive a general expression for the conditional inten-
sity let p be the density function of (8)

p
(

xi

ψi
|Ht ;θ

)
= p

(
xi

ψi
| θ
)
, (9)

where θ is a parameter vector. This implies that the time dependence of the duration process is
summarized by the conditional expected duration sequence. If we define again a MPP on [t0,T )×
Y for some finite positive time T and let (t1,y1) , . . . ,

(
tN(T ),yN(T )

)
be a realization of N over the

interval [0,T ), one can easily show that the conditional expected intensity of the inter-exceedances
times between extreme events, the ground process, can be expressed as a multiplicative effect
between the baseline hazard function and a shift given by the expected duration

λg(t |Ht ;θ) = λ0

(
t− tN(T )

ψN(T )

)
1

ψN(T )
. (10)

Furthermore, we also consider the case where the marks are conditionally generalized Pareto,
given the history Ht . To this end, we parameterize β (t,y |Ht) such that it depends on the history2.
In this way, we assume that in a period of turmoil the temporal intensity of the inter-exceedance
times and the magnitude of the marks increase. The ACD-POT model is also defined as follows

λ (t,y |Ht ;θ) =
λ0

(
t−tN(T )
ψN(T )

)
ψN(T )β (t,y |Ht)

(
1+ξ

y−u
β (t,y |Ht)

)−1/ξ−1

+

. (11)

Effectively we have combined the one-dimensional intensity in (10) with a generalized Pareto
density. Under this model the conditional rate of crossing the threshold x ≥ u at time t, given the

2We can also parameterize the shape coefficient ξ . However, the behavior of the estimation is severely affected.
For this reason it is reasonable to assume the shape parameter to be constant.
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history Ht up to that time, is

τ (t,y |Ht ;θ) =

ˆ
∞

y
λ (t,s |Ht ;θ)ds =

λ0

(
t−tN(T )
ψN(T )

)
ψN(T )

(
1+ξ

y−u
β (t,y |Ht)

)−1/ξ

+

,

while the implied distribution of the marks when an extreme observation occurs is given by

τ(t,u+ y |Ht ;θ)

τ(t,u |Ht ;θ)
=

(
1+ξ

y−u
β (t,y |Ht)

)−1/ξ

+

= Gξ ,β (t,y|Ht)(y).

Note that the marginal distribution of the marks will now be a conditional GPD.
In the following subsections we introduce specific models that enable to parametrize the ex-

pected conditional duration function ψi, the distribution of probability of the standardized dura-
tions εi and the models for the scale parameter β (t,y |Ht).

3.3.1. ACD models for the expected conditional duration

In this subsection, we consider models that allow for additive as well as multiplicative compo-
nents in the conditional duration function ψ . In addition, we introduce parametrizations that allow
not only for linear but also for more flexible innovations impact curves. For simplicity, we restrict
our attention to ACD models of order (1,1). The most popular autoregressive conditional duration
models are:

• (ACD) The first ACD model (Engle and Russell, 1998) : ψi = w+axi−1 +bψi−1.

• (Log-ACD) The logarithmic ACD model introduced by Bauwens and Giot (2000) :ψi =

exp{w+axi−1 +bψi−1} , where w > 0, a,b≥ 0.

• (BCACD) The Box-Cox-ACD model (Dufour and Engle (2000)): ψi = w+ a
δ

(
εδ

i−1−1
)
+

bψi−1.

• (EXACD) The EXponential ACD Model (Dufour and Engle, 2000): ψi =w+{aεi−1 +δ |εi−1−1|}+
bψi−1.

In order to ensure stationarity and existence of the unconditional expected duration for the Log-
ACD model we need a+ b < 1. Strict stationarity of the conditional mean for the models Log-
ACD, BCACD and EXACD is guaranteed when |b| < 1. This BCACD specification includes the
Log-ACD model for the Box-Cox parameter δ → 0 and a linear specification for δ = 1. For the
EXCAD model, the news effects are modeled with a piece-wise linear specification. Thus, for
durations shorter than the conditional mean (εi−1 < 1), the news impact curve has a slope a− δ
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and an intercept w+δ . Durations longer than the conditional mean (εi−1 > 1), also have a linear
effect, but with a slope a+δ and intercept w−δ . For more references to ACD models we refer to
Hautsch (2004); Bauwens and Hautsch (2009).

3.3.2. Distributional assumptions for the standardized durations

Besides the specification of the conditional mean function, another important issue in the
parametrization of our ACD-POT model is the choice of the innovation process. There are many
options for choosing the distribution for εi, as long as it is a probability distribution on the real
positive line with zero. Engle and Russell (1998) used the exponential distribution and considered
using the Weibull distribution.

In this subsection we explore two alternatives given by the Burr (Grammig and Maurer, 2000.)
and the generalized gamma distribution (Lunde, 1999). The major advantage of these distributions
over the exponential and Weibull distribution, is that they have non-monotonic hazard functions
taking bathtub shaped or inverted U-shaped forms. This feature is of particular importance if we
are interested in modeling risk measures such as the VaR or the expected shortfall.

The first alternative is the generalized gamma distribution introduced by Lunde (1999) in the
context of ACD models to characterize the standardized durations. A three parameter generalized
gamma density is given by

f (x | γ,k) = γxkγ−1

λ kγΓ(k)
exp
{
−
( x

λ

)γ}
, x > 0.

It includes the exponential distribution (γ = k = 1), the Weibull distribution (k = 1), the half-
normal (γ = 1/2, k = 1) and the ordinary gamma distribution (k = 1). Under the restriction that
λ = 1 we chose ϕ (ψi) = φi = ψi

Γ(k)

Γ

(
k+ 1

γ

) which implies a conditional density of the standardized

duration given by

p
(

xi

φi
|Ht ;θ

)
=

γψi

xiΓ(k)

(
xi

φi

)kγ

exp
{
−
(

xi

φi

)γ}
,

where θ is once more a parameter vector. Note that if k = 1, then we get the Weibull-ACD model,
while for k = γ = 1 the model reduces to an Exponential-ACD model. The hazard function implied
by the generalized gamma model may now be written as

λg(xi |Ht ;θ) =

γxkγ−1
i

φ
kγ

i Γ(k)
exp
{
−
(

xi
φi

)γ}
I
(

k,
(

xi
φi

)γ) ,

where is the upper incomplete gamma integral I
(

k,
(

xi
φi

)γ)
=
´

∞(
xi
φi

)γ uk−1 exp(−u)du.
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In addition, the shape properties of the conditional hazard function can be derived from its
parameter values. If kγ < 1, the hazard rate is decreasing for γ ≤ 1 and U-shaped for γ > 1.
Conversely, if kγ > 1, the hazard rate is increasing for γ ≥ 1, and inverted U-shaped for γ < 1.
Finally, if kγ = 1, the hazard is decreasing for γ < 1, constant for γ = 1, and increasing for γ > 1.

The conditional intensity of an ACD-POT model under this distributional assumption takes the
form

λ (t,y |Ht ;θ) =

γxkγ−1
i

φ
kγ

i Γ(k)
exp
{
−
(

xi
φi

)γ}
I
(

k,
(

xi
φi

)γ) 1
β (t,y |Ht)

(
1+ξ

y−u
β (t,y |Ht)

)−1/ξ−1

+

.

The conditional log-likelihood function of this model on a set of observed inter-exceedance times
and of marks or sizes of the exceedances can be derived easily from (5)

L =
N(T )

∑
i=1

{
logγ +(kγ−1) log

(
xi

φi

)
− log(Γ(k)φi)−

(
xi

φi

)γ}

−(1+1/ξ )
N(T )

∑
i=1

log
(

1+ξ
yi−u

β (t,y |Ht)

)
+

.

The second alternative considered in this paper is the Burr distribution introduced in the context
of ACD models by Grammig and Maurer (2000). The density function is defined by

f (x | λ ,k,γ) = λktk−1(
1+ γ2λ tk

)γ−2+1
.

In this case we define ϕ (ψi) = φi = ψi
γ

2(1+ 1
k )Γ(γ−2+1)

Γ(1+ 1
k )Γ(γ−2− 1

k )
, where 0 < γ−2 < k. We choose the density

(9) to be Burr under the restriction that λ = 1,

p
(

xi

φi
|Ht ;θ

)
=

kφ
1−k
i xk−1

i(
1+ γ2φ

−k
i xk

i

)γ−2+1
.

The implied conditional hazard function in this case is

λg(xi |Ht ;θ) =
kφ
−k
i xk−1

i

1+ γ2φ
−k
i xk

i
, (12)

which is non-monotonic function with respect to duration. From (12) can be obtained: the Weibull-
ACD model if γ2→ 0, Exponential-ACD model if γ2→ 0 and k = 1 and Log-Logistic ACD for
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γ2 = 1. The conditional intensity in this case takes the form

λ (t,y |Ht ;θ) =
kφ
−k
i xk−1

i

1+ γ2φ
−k
i xk

i

1
β (t,y |Ht)

(
1+ξ

y−u
β (t,y |Ht)

)−1/ξ−1

+

.

The conditional log-likelihood function of an ACD-POT model under this distributional assump-
tion on a set of observed inter-exceedance times and of marks can also be obtained from (5), i.e.,

L =
N(T )

∑
i=1

{
logk− k logφi +(k−1) logxi−

(
1+ γ

−2) log
(

1+ γ
2
φ
−k
i xk

i

)}
−(1+1/ξ )

N(T )

∑
i=1

log
(

1+ξ
yi−u

β (t,y |Ht)

)
+

.

3.3.3. Models for the time varying scale parameter

In this section we consider different models to parametrize the scaling parameter β (t,y |Ht)

such that it depends on the history. This feature implies that the marks are conditionally general-
ized Pareto, given the history Ht up to the time of the mark. Under these models we assume that in
a period of turmoil the temporal intensity of the inter-exceedance times and the magnitude of the
marks increase. Let t∗ y y∗ correspond to the time and mark of the last extreme events that occur
before the time t. We will specify and estimate five alternatives forms for the scaling parameter
β (t,y |Ht).

1. The constant scale: β (t,y |Ht) = β1.

2. The lineal scale: β (t,y |Ht) = ω +β1y∗+β2ψ∗.

3. The polynomial scale: β (t,y |Ht) = ω +β1y∗+β2ψ
β3
∗ .

4. The Hawkes 3 scale: β (t,y |Ht) = ω +β1 ∑i:ti<t (1+β2yi)exp(β3 (t− ti)) .

5. The autoregressive realized duration (ARD) scale: β (t,y |Ht) = ω + β1β (t∗,y∗ |Ht∗)+
β2

(t−t∗)
β3
.

For all models ω and ∀i βi ∈ R+. The first specification considers the constant scale case. The
second and third of these correspond to a scaling parameter, which depends on the last mark and
(linearly or polynomially) on the conditional mean function of the inter-exceedance times. The
ARD scale specification directly includes the realized durations between excesses as covariates
in contrast to the first two specifications. Finally, the Hawkes scale specification increases with

3Hawkes models type are frequently used in seismological modeling. See Ogata (1988) and Daley and Vere-Jones
(2003) for additional references.
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mark occurrences and their magnitudes, and decreases in time away from each event. All of these
models have the feature that whenever an extreme event is observed the scale parameter should
dynamically adapt. This strategy obviously should result in an improved estimation on measures
of risk. In case of VaR, these specifications will typically lead to an increase depending on the size
of the marks, the expected durations and/or the realized duration between the last extreme events.

3.4. Risk measures

One main purpose of this paper is to develop a suitable methodology to obtain an expression
and its estimate for the quantile of the one day ahead predictive distribution of the returns, con-
ditional on past and current data. In particular, we focus on Value-at-risk (VaR) and Expected
shortfall (ES). These measures have become standard measures in financial risk management due
to their conceptual simplicity, computational facility and ready applicability. In what follows we
derive these measures for the ACD-POT models.

The VaR is defined as the q-th quantile of a distribution F given by

VaRt
α = yt

α = inf
{

y ∈ R : Fyt+1|Ht (y) = α
}
,

which is solution to P(yt+1 > yt
α |Ht) = 1−α . Observe that

P
(
yt+1 > yt

α |Ht
)

= P
(
yt+1−u > yt

α −u |Ht
)

= P
(
yt+1−u > yt

α −u | yt+1 > u,Ht
)
P(yt+1 > u |Ht) . (13)

The first term in the right hand side of equation (13) can be approximated via

P
(
yt+1−u > yt

α −u | yt+1 > u,Ht
)
=

(
1+ξ

yt
α −u

β (t,y |Ht)

)−1/ξ

+

,

while

P(yt+1 > u |Ht) = P(N (t, t +1) = 1 |Ht)

= 1− exp(−λ (t,s |Ht ;θ)) .

Thus the VaR is defined by

VaRt
α = u+

β (t,y |Ht)

ξ

((
1−α

1− exp(−λ (t,s |Ht ;θ))

)−ξ

−1

)
. (14)

The last equation implies that the VaR is only defined for our models if 1−exp(−λ (t,s |Ht ;θ))>

1−α . In the case of expected shortfall (ES), it is defined as the average of all losses which are
16
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Figure 3: The path of the conditional intensities of an ACD-POT model under four types of distributional assumptions.
Top panel: exponential (left) and Weibull; Bottom panel: Burr (left) and generalized gamma

greater or equal to VaR, i.e. the average loss in the worst (1−α)% cases ESt
α = E [Y | Y > VaRt

α ].
In the models proposed the ES is given by

ESt
α =

VaRt
α

1−ξ
+

β (t,y |Ht)−ξ u
1−ξ

. (15)

3.5. A toy example

It is quite evident that the performance of the models depends on the distributional assumptions
and the estimated time varying scale parameter. To gain understanding about their influence we
visually analize the behavior of the estimated conditional intensity of a small sample based on
Bayer returns (the entire sample will be analysed later in detail).

At first we only concentrate on the kind of distributional assumption. Figure 3 displays the
path of a ACD-POT model with four types of distributions: in the top panel the exponential (left)
and the Weibull (right), as subcases of the Burr or generalized gamma distribution, and in the
bottom panel the Burr (left) and the generalized gamma (right) distribution. Observe that in case
of the exponential and Weibull distributions we have a flat or monotone conditional intensity,
respectively. On the other hand, both the Burr and the generalized gamma distribution show a non-
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Figure 4: The path of the conditional intensities for the four models proposed under the assumption of a generalized
gamma distribution for the innovations: the gACD1 (top left), the gLog-ACD1 (top right), the gEXACD1 (bottom
left) and the gBCACD1model (bottom right).

monotone conditional intensity. This important feature allows the last two distributions rapidly
adapting the conditional intensity to reach periods of high volatility which are associated with
clustering of short inter-exceedance times.

In relation to the type of ACD model for conditional mean duration, Figure 4 shows conditional
intensities for the four models, proposed under the assumption of a generalized gamma distribution
for the innovations: the ACD (top left), the Log-ACD (top right), the EXACD (bottom left) and
the BCACD model (bottom right). At this stage, it is not yet possible to reach a conclusion on
the appropriateness of each model. However, before we make a choice, there are some important
features of the models to keep in mind. On the one hand, the Log-ACD allows for nonlinear effects
of short and long durations in the conditional mean, without requiring the estimation of additional
parameters in comparison to the standard ACD model. While on the other hand, the BCACD and
the EXACD models offer a captivating compromise between the need of greater flexibility and the
burden of higher complexity.
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4. Empirical application

In this section we present the main empirical results obtained by testing the models introduced
in the previous sections.

4.1. Data Description

For the empirical test we chose the transaction data from three sources:

• Bayer AG, blue chip stock from GermanyŽs DAX.

• DAX index, a market value-weighted portfolio of 30 major German companies traded at the
Frankfurt Stock Exchange.

• A portfolio of international equity indices previously analysed in McNeil et al. (2005) and
Chavez-Demoulin et al. (2011). This portfolio value is standardized to have weights 30%
FTSE100, 40% S&P 500 and 30% SMI. The portfolio is assumed to have domestic cur-
rency sterling (GBP) and consequently has currency exposure to US dollar (USD) and Swiss
franc (CHF). The value of the portfolio is therefore influenced by five risky factors: three
log–index values and two log-exchange rates.

The sample period for Bayer and DAX spans from 2 January 1990 to January 18, 2008, two days
before January 20, when the Global stock markets suffered their biggest falls since September 11,
2001. A second sample is used for backtesting the estimation of the VaR from 20 January 2008
to January 16, 2009. These data were obtained from Datastream. In case of the portfolio, the data
comprises daily closing prices, from January 3, 1991 to December 29, 2000. For backtesting we
consider a sample from January 3, 2001 to December 28, 2001. This data was obtained from the
R library QRMlib, see McNeil et al. (2005).

In this study we concentrate only on the left tail, so that the daily returns are obtained as
rt = −100ln(pt/pt−1), where pt denotes the (closing) stock price at day t. In the backtest we
daily update the new information that becomes available for the parameter estimates previously
obtained. Thus, we dynamically adjust quantiles, which allows us to improve the estimation of the
risk measures as accurately as possible.

Table B.1 presents some relevant summary statistics about the unconditional distribution of the
returns. The statistics show that all returns exhibit skewness to the losses as well as excess of kur-
tosis. Serial correlation was not rejected for DAX and Bayer returns, but for the portfolio returns
with p-value of basically zero. For the squared returns the null hypothesis of no heteroscedastic-
ity was clearly rejected for the three series. This probably anticipates the existence of volatility
clusters.
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4.2. Model fit and model selection

In order to summarize adequately the large quantity of empirical results, we use a classification
scheme for the ACD-POT models. The first lower-case letter describes the type of distributional
assumption with respect to the ACD model (generalized gamma or Burr). The following capital
letters denote the type of ACD model: ACD, Log-ACD, BCACD or EXACD4. The number after
the ACD model denotes the models for the time varying scale parameter: l (constant), 2 (linear),
3 (polynomial), 4 (Hawkes) and 5 (ARD). For example, a model gLog-ACD1 means that we are
working with a Log-ACD model for the expected conditional duration with generalized gamma
distribution and constant scale parameter. In total we have 40 models.

All parametric models are estimated using quasi maximum likelihood. We adopt different
models according to our scheme classification in order to test the different ACD models with
different distributional assumptions regardless of the possibility of a model with constant scale
parameter5 (marks with iid GPD) or varying scale parameter (marks with GPD whose scale pa-
rameter is time-dependent).

An important point is the choice of the threshold, which implies a balance between bias and
variance. The threshold must be set high enough so that the exceedances are distributed general-
ized Pareto. There is no unique choice of the threshold level. A number of diagnostic techniques
exist for this purpose, including graphical, bootstrap methods (see Embrechts et al. 1997; Falk
et al. 2004). However, the choice of the optimal threshold is still considered an open problem
and different approaches have been proposed to overcome this difficulty. The optimal choice is
inspected via a sensitivity analysis which allow us to verify whether the tail index of the ACD-POT
models remains stable among different thresholds. The procedure is detailed in Appendix A. In
this paper we choose to work with the 10% of the maxima of the sample.

Since we report the empirical results for a large number of models6, we decided to reduce the
number of models, so that we concentrate on the best results and the models of interest. However,
the complete set of results is available from the authors upon request. Notwithstanding the above,
some comments about the results can be made. For the inter-exceedance times, the generalized
gamma distribution seems to give better estimations than that of the Burr distribution. The results
on ACD models for the expected conditional duration seem to markedly favor the Log-ACD spec-
ifications, followed by the ACD. Finally, the models with time varying scale parameters lead to a

4For a meaningful comparison of alternatives and for simplicity, we limit the dynamic structure of the ACD-POT
models to the first lag order only.

5Observe that this is equivalent to fitting separately a ACD model to the inter-exceedance times and a GPD to the
excess losses over the threshold.

6For each return series we obtain 40 different models together with a large number of measures of GoF for different
levels of VaR.
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better fit. The Hawkes specification provides an uniformly better fit among the returns, followed
by the linear and polynomial approach. In short, the results suggest that the models with time
varying scale parameter have a better fit and react more quickly to increasing and decreasing clus-
ter of extremes, which means that the size of the exceedances has an effect on the probability of
further exceedances in the near future.

We follow a pragmatic approach in choosing the model that is best suited to return modeling
and the VaR requirements. The key idea is to select the best models fitted according to AIC and
that, in relation to the VaR in-sample and the different Goodness of fit (GoF) measures, display
the most accuracy. To this end, we propose a modified AIC (mAIC), which considers this idea:

AIC∗ = AIC−2 f ,

where AIC is the classical estimation and f is the number of tests that correctly accept the Null
hypothesis for the GoF of inter-exceedance times, of the marks or exceedances, and of the accuracy
measures for the VaR at levels (α = 0.05,0.01,0.001), with a statistical significance at 5 %.

For each return series we select the best three models for each distributional assumption for
the standardized durations. The maximum log-likelihood estimates of these ACD-POT models and
their parameters are displayed in Table B.2. Regarding the dynamic of the VaR, we display the
results on the estimation of the conditional 99% VaR in-sample in Figure B.7. Observe how this
estimates provides a time-dependent VaR that is sensitive to short and large time scale volatility
changes.

For the Bayer return series, under the assumption of that the standardized durations are dis-
tributed Burr, the best models fitted according to mAIC are bEXACD4, bLog-ACD3 and bACD3,
while that under the assumption of that the standardized durations are distributed generalized
gamma are gLog-ACD2, gLog-ACD3 and gACD3. Regarding the AIC of the models proposed,
the best fitted model for the Bayer returns is a ACD model with generalized gamma distribution
and Hawkes specification for the scale parameter (gACD4) with AIC of 4056.19. However, the
model that shows the best accuracy in relation to the measures of GoF is an gLog-ACD model
with polynomial specification for the scale parameter. Observe that in this model the expected
duration has a direct (no-lineal) relation with the accuracy of the VaR (see Table B.3). Indeed the
parameter β3 = 2.353 (0.867) is the most significant coefficient in the specification of the time
varying scaling parameter β (t,y |Ht).

In addition, for the gACD4 model we observe that k = 60.007 (38.884), γ = 0.117 (0.038),
which implies that kγ > 1 and γ < 1 so that the hazard rate is inverted U-shaped7. In relation to

7This remains true for all the models with generalized gamma distribution.
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the results of estimation of the conditional GPD model to the exceedances we obtained ξ =0.091
(0.088), ω= 0.663 (0.041), β1=170 (0.098), β2= 0.075 (0.027) and β3= 0.279 (0.366). This result
indicates that the Hawkes form to parametrize the scaling parameter β (t,y |Ht), such that it de-
pends on the history, was a good choice. Interestingly, the size of the exceedances are as important
as the expectation of the old inter-exceedance times.

In relation to the DAX returns, the best models fitted are bACD4, bLog-ACD and bEXACD
for the case where the standardized durations are distributed Burr. Under the generalized gamma
assumption the best models are gACD2, gLog-ACD2 and gLog-ACD3. The overall best fitted
model is a Log-ACD model with generalized gamma distribution and polynomial specification for
the scale parameter (gLog-ACD3) with AIC of 3775.03. Also for this observations the best models
fitted have a generalized gamma distribution and show a inverted U-shaped hazard rate.

Finally we consider the results of the ACD-POT models fit to the hypothetical portfolio of
international equity indexes. In this case the best models are the ACD2, Log-ACD2 and Log-
ACD4 either the standardized durations are distributed Burr or generalized gamma. Like the
results for the other returns, the best specification for the standardized durations is the generalized
gamma distribution. However, it is not easy to select the best choice among the models for the
time varying scale parameter. Slightly better performance is given by the gACD4 model according
to the mAIC.

For the three returns analysed, we show how the intimate relationship between durations and
cluster of extremes can be used to obtain a dynamical better fit of extreme events; by means of
a time varying scale parameter and a flexible distributional assumption, which allows the sort of
hazard functions that earlier authors have found to be realistic in modeling the dynamics of "price
durations" in stock markets (see for instance Zhang et al., 2001 and Grammig and Maurer, 2000).

4.3. Comparison with alternative strategies in-sample

Although the model of choice identified by the AIC may be seen as the best among the existing
models because it shows the best global fit, this does not mean that it is the best model for backtest-
ing. Threfore, we generally check whether the major features of the given data can be reproduced
by the estimated models, for instance, the cluster of extreme events. If this important feature is not
reproduced, we could consider further models that can be compared with the previous best model.
To this end, we include other models to have a comparison of different alternatives later in the
backtest.

GARCH-EVT

The first alternative is the two step method (GARCH-EVT) introduced by McNeil and Frey
(2000). The first step consists in fitting a time–varying volatility model, as a GARCH model, to
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the data and estimating the tail of the filtered or standardized residuals, by an EVT model, yielding
an estimate for the standardized quantile. This procedure is a conditional extreme value approach,
so that a correct model specification of the volatility and mean dynamics is necessary. In this paper
we will adopt three conditional models:

• ARMA-GARCH-EVT with Gaussian errors (CondN) as the original model introduced by
McNeil and Frey (2000). The best specifications according to the AIC for the Bayer, DAX
and the portfolio returns are ARMA(2,0)-GARCH(1,1)-EVT, ARMA(2,2)-GARCH(2,1)-
EVT, and ARMA(3,3)-GARCH(1,1)-EVT, respectively.

• ARMA-GARCH-EVT with t-Students errors (CondS). In this case the specifications for
the Bayer, DAX and the portfolio returns are ARMA(2,0)-GARCH(1,1)-EVT, AR(2,2)-
GARCH(2,1)-EVT, and ARMA(2,2)-GARCH(1,1)-EVT, respectively.

• ARMA-APARCH-EVT with Skew t-Students errors (CondST) in order to better account for
conditional asymmetry and heavy-tailedness8. In this case the specifications for the Bayer,
DAX and the portfolio returns are ARMA(0,0)-APARCH(1,1)-EVT, AR(2,2)-APARCH(2,1)-
EVT, and ARMA(1,1)-GARCH(1,1)-EVT, respectively.

In comparison with unconditional EVT, different authors (McNeil and Frey 2000; Gencay et al.
2003) demonstrate that this conditional methodology produces the most accurate forecasts of ex-
treme losses both for standard and more extreme VaR quantiles and not only in normal market
conditions but also in extreme market conditions. This is due to the fact that conditional VaR
estimates embrace different volatility regimes, varying a lot more than unconditional ones. Thus,
this model captures the benefits of both EVT and conditional volatility methodology.

CAViar

The second alternative approach is to use quantile regression based methods as in Engle and
Manganelli (2004) who consider an autoregression of the estimated VaRs. Thus, while statistical
volatility models rely on the assumption that the shape of the conditional distribution is fixed over
time and that it is only the volatility that varies. The recently proposed Conditional Autoregressive
Value at Risk (CAViaR) model requires no such assumption, and allows quantiles to be modeled
directly in an autoregressive framework. The key assumption is that the linear regression model
is rt = x’

tβα + εt,α , where rt are the returns, and the conditional quantile function is given by

8The APARCH, or APGARCH, model of Ding et al. (1993) nests several of the most popular univariate parame-
terizations.
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Qα (rt | xt) = x’
tβα . Note that the distribution of the error term is left unspecified. Engle and

Manganelli (2004) show that α-th regression quantile is defined as any β̂α that solves the following
generalized objective function

min
β

1
T

{
T

∑
rt≥VaRt

α |rt +VaRt |+
T

∑
rt<−VaRt

(1−α) |rt +VaRt |
}

with VaRt = Qα (rt | xt). The main advantage of this methodology is that no explicit distributional
assumptions need to be made, guarding against this source of model misspecification. In this paper
we consider four alternatives initially proposed by Engle and Manganelli (2004):

• The adaptive (CAViaRad): VaRt =VaRt−1 +β2

{[
1− exp(β2 [rt−1−VaRt−1])

−1−α

]}
.

• The symmetric absolute value (CAViaRsa): VaRt = β1 +β2VaRt−1 +β3 |rt−1|.

• The asymmetric slope (CAViaRas): VaRt = β1 +β2VaRt−1 +β3 max(rt−1,0)+
β4 max(−rt−1,0)

• The indirect GARCH(1, 1) approach (CAViaRGARCH): VaRt =
√

β1 +β2VaR2
t−1 +β3r2

t−1

The adaptive model, as the name suggests changes itself depending on whether or not VaR is
exceeded. It takes a higher value when VaR is exceeded but decreases slightly otherwise. These
last three models are similar to GARCH models in structure, the second and the fourth model are
symmetrical, and hence respond symmetrically to past returns, while the third model responds
asymmetrically to returns and captures the asymmetric leverage effect.

4.4. Measures of goodness of fit

To assess the predictive performance in-sample and out-sample (backtest) of the models under
consideration, we divide these into: measures of Goodness of fit (GoF) for inter-exceedance times
(GoF ACD), GoF for the marks or exceedances (GoF POT) and measures of accuracy for the VaR.

For the Gof for inter-exceedance times we employ density forecasting techniques for ACD
models introduced by Bauwens et al. (2004) by means of a Pearson statistic (χ2) together with
the Kolmogorov-Smirnov test (KSACD) and the Anderson-Darling test (AD) for the standardized
durations. In addition, in order to check that there is no further time series structure the Ljung-Box
test (LBACD) is also included.

In the case of the GoF for the marks we utilize the W-statistics (Smith, 2003) to assess our
success in modeling the temporal behavior of the exceedances of the threshold u. This statistic
states that if the GPD parameter model is correct, then the residuals are approximately independent
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unit exponential variables. Further, we utilize the Kolmogorov-Smirnov test (KSPOT ) statistic to
test that the residuals are approximately unit exponential variables.

Similarly, we provide empirical evidence on the accuracy of actual VaR measures derived from
the models. The first of them is an unconditional coverage (LRuc) test (Christoffersen, 1998). The
idea is to test if the fraction of violations obtained for a particular risk measure is significantly
different from the theoretical one. A violation of the VaR or Hit is defined as occurring when the
ex-post return is lower than the VaR. A second test proposed by Christoffersen (1998) is a test of
independence (LRind) between violations of the VaR, where under the null hypothesis a violation
today has no influence on the probability of a violation tomorrow. The third test is a combination
of the last two test which is known as the conditional coverage (LRcc) test. The fourth approach
proposed by Berkowitz et al. (2009) tests for uncorrelatedness of the violations. In particular,
we suggest the well-known Ljung-Box (BT ) test of the violation sequence’s autocorrelation func-
tion. The last two tests, named the Dynamic Quantile (DQ) tests, were introduced by Engle and
Manganelli (2004). The idea is to regress the violations on the VaR for the present period on a
judicious choice of explanatory variables. In the first case, denoted by the DQhit , the regressor
vector contains a constant and lagged violations of the VaR, while the second, DQVaR, aditionally
uses, the contemporaneous VaR estimate. All of these methods of GoF are reviewed briefly in the
Appendix Appendix B.

4.5. Relative performance of the ACD-POT models in-sample

The results on the goodness of fit in-sample under the alternative modeling assumptions are
reported in Tables B.3, B.4, and B.5, for Bayer-, DAX- and portfolio returns, respectively.

In relation to the ACD-POT models, the performance varies substantially across the modeling
approaches as well as the distributional assumptions, however, some clear patterns emerge. In
particular, the superior performance of the generalized gamma distribution relative to the Burr is
clearly present in all the ACD-POT models. Observe that the main benefit of modeling extreme
events by means of the ACD-POT methodology over other EVT specifications or the competitive
models used here, lies in the explicit modeling of the inter-exceedance times, which is is particu-
larly reflected in the GoF ACD. Regarding the GoF POT related to the distribution of the marks
or exceedances, all ACD-POT models show an acceptable level in any of the testing categories.
Finally, the measures of accuracy for the VaR for the ACD-Models display a top performance at
all the VaR levels with respect to correct unconditional and conditional coverage, as well as for
any dynamic quantile test.

In what follows, we briefly discuss the performance of the CAViar models. Based on the results
reported, we can observe that for all the returns analysed this methodology is a simple and accurate
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approach to forecast VaR. However, a pitfall of the CAViar models is (with one exception) that their
functional forms do not account for the dynamics in the clustering of extreme events. Therefore,
CAViaR is not able to produce iid VaR violations, which leads to strong rejection of independence
of the violation sequences for all CAViar models used by mean of the DQVaR, under which the
contemporaneous VaR estimate is also included in the regression.

Next, we turn to the results of the GARCH-EVT models, which deliver mixed results. In
particular, the proper specification of the volatility dynamics is clearly the key point for the ac-
curacy of the VaR estimates. Of course, it is far from obvious as to which specification will be
optimal, and the decision should be based on out–of–sample VaR forecasting performance rather
than in-sample. Regardless, the empirical results for all returns clearly demonstrate that the most
flexible approach, in this case the CondST model, performs best. Specially, using a fat–tailed
and asymmetric distribution we would expected to improve VaR forecast. Nevertheless, accord-
ing to the GoF POT measures, we obtain an adequate W-statistic only for the portfolio returns,
which state that the residuals are approximately independent unit exponential variables in the case
that the GPD specification for the exceedances is correct. This is also confirmed by means of
the Ljung-Box test (LBPOT ) statistic which examines the null hypothesis of independence of the
exceedances. Regarding the accuracy of the VaR estimate, our findings indicate that as far as the
unconditional and conditional coverage is concerned, the normal assumption for the residuals do
not seem to be the most adequate, while the skew Student’s-t and Student’s-t assumptions yield
quite accurate results for most of the returns analysed for VaR at 0.01 and 0.001 levels. Although,
for a 0.05 VaR level, all of these models tend to perform worse. Regarding the independence of
the VaR violations, the results are mixed for returns analysed. According to the LRind and DQ
tests applied, the explanation is that variation in volatility results in substantial variation in the
mean inter-exceedance time between the marks or exceedances, so that no homogeneous result for
independence at each VaR level can be obtained.

Summarizing the results for the ACD-POT models: Major improvements in VaR predictions
are achieved in all aspects when the clustering dynamic of extreme events are taken into con-
sideration. Indeed, by means of the GoF ACD we can test misspecification of the ACD models
for the expected conditional duration and the distributional assumption standardized durations.
Further, through the GoF POT we can control the correct conditional distribution of the marks
or exceedances. Finally, regarding the returns analysed, as a result of these two improvements,
the VaR violations are reasonably independent when using an ACD-POT model either the stan-
dardized durations are assumed Burr or generalized gamma - the latter being preferred overall.
The above implicates that the ACD-POT based approaches outperform the basic specifications of

26



CAViar models. According to the VaR estimations, ACD-POT and GARCH-EVT methodology
were the only methods that, more often than not, eradicates the threat of violation clustering.

4.6. Backtesting the models

Backtesting provides invaluable feedback about the accuracy of the models proposed to risk
managers. The performance of VaR w.r.t. backtesting has been carried out with the daily returns
series, which are scaled by 100, for one year of the three return series. The DAX and Bayer data
are backtested from 20 January 2008 to January 16, 2009, while in the case of the portfolio we
consider a sample from January 3, 2001 to December 28, 2001.

The backtest method consists of comparing the estimated conditional VaR for one day time
horizon t, given knowledge of returns up to and including t for three different confidence levels
(0.95, 0.99, and 0.999). For each day in the back test we re-estimate the models, something
that immediately reveals a models’ possible stability problems. Then, we re-estimated the risk
measures for each return series.

For the backtest we only consider the best performing models in the in-sample estimation. To
this end, we choose the best two models in each methodology in relation to each return series. In
total we will consider six models per return series.

The results for 0.1% to 5% VaRs of the Bayer returns, which also covers the financial crisis
period, are presented in Table B.6 and includes the VaR violations and the p-values for the different
tests of unconditional and conditional coverage, and dynamic and no-dynamic independence. In
relation to the ACD-POT models, we consider the gLog-ACD3 and the gLog-ACD4 specification.
The performances for the models are similar to the results on VaR forecasting, although we observe
some differences. For instance, the models tend to overestimate the 0.1% VaR. This was most
likely due to the impact of the subprime crisis in the German financial markets. Indeed, two
violations correspond to the beginning of the market turmoil. The results for the GARCH-EVT
methodology are not so different. In this case again the model specifications have difficulties to
make a correct estimation of the VaR at all confidence level. However, the 0.1% VaR a correct
estimate, while that for 1% and 5% VaRs is not efficient enough. Finally, the results of the CAViar
specification suggest that these models display the best performance for the Bayer returns.

In relation to the DAX index, the main result in Table B.6 is that, considering the models pro-
posed, the ACD-POT models and the GARCH-EVT specifications are always more precise that
the CAViar methodology. This result holds true across different tests, as does, for example, un-
conditional and conditional VaR coverage, independence tests and VaR confidence levels chosen.
The differences in some test are sometimes very large. For instance, in Table B.6, using a 5%
significance level for any VaR the correct confidence level the VaR coverage is rejected. Further,
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the DQVaR test clearly appears to pick up dependence in the VaR violations, which is ignored by
the Markov test. In relation to the ACD-POT approach, the models with the best performance are
the gACD2 and the gLog-ACD3. Observe that the two models seem to be correctly specified and
highly precise, as measured by the accuracy of the VaR.

We finally consider the hypothetical portfolio of international equity, which are influenced by
five risk factors. In this case both ACD-POT models show a more accurate fit and a superior
performance in relation to the VaR prediction than the other two alternatives. This result holds
true across VaR coverage rates and independence tests for the violations at all significance levels
chosen. In Table B.6, the gACD4 and gLog-ACD4 models were the only methods that did not
underestimate the 5%VaR while the other two methods clearly underestimated the probability of
violation. Finally, due to the shortness of the time horizon we do not find a VaR violation for the
0.001 quantile, and therefore the p-values for the tests of independence are not reported.

To summarize, the results of our backtesting procedure, with a dynamic adjustment of quantiles
incorporating the new information daily, allows us to statistically conclude that the ACD-POT
models proposed are suitable for the estimation of different risk measures, as for example, the VaR
according to the restriction imposed by Basel Committee on Banking Supervision (1996, 2006).
Moreover, these models allow us to take the heavy-tailedness or the stochastic nature of the cluster
of extreme events into consideration. Regarding the returns analysed at a 5% level of significance,
the ACD-POT approaches pass 86 out of the 102 tests, the GARCH-EVT specifications pass 26
out of the 102, whereas the CAViar approaches only pass 33 out of the 102 tests.

In relation to the CAViar methodology, out results are quite striking in relation to the Engle
and Manganelli (2004) results. Contrary to the results reported by them, a weaker CAViaR perfor-
mance is estimated for index data than for individual stock returns. The fact that the Bayer stock
market and the DAX index comprise a highly volatile backtesting year may presumably deterio-
rate the performance of the established CAViaR models with the more positive findings of Engle
and Manganelli (2004). The key point is that most of the CAViar specifications used in this inves-
tigation do not account for volatility clustering, and therefore, they are not able to produce iid VaR
violations, causing us to strongly reject independence of the violations and the contemporaneous
VaR estimates for most of the models.

Regarding the GARCH-EVT approach, the performance varies substantially across the model-
ing approaches as well as the distributional assumptions. The main findings indicate that, at least
for the returns analysed, the 5% quantile is still not large enough to be analysed by means of this
approach. However, major improvements in VaR predictions are achieved in all aspects when we
account for the volatility dynamics and the extreme events.
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5. Conclusions and proposals for future work

This paper proposed a new technique for modeling extreme events of stationary sequences as
is the case for most financial returns. We make use of a new class of self-exciting point process
models that seem particularly well suited. The idea was to create a model able to incorporate
stylized facts, such as clustering of extreme events and autocorrelation of the inter-exceedance
times of extreme events, i.e., properties that are observed in practice.

The model can be interpreted as a combination between the classical Peaks over Threshold
(POT) model from Extreme Value Theory and the class of Autoregressive Conditional Duration
(ACD) models which are popular in finance. For this reason we describe it as the ACD-POT
model.

We observe that under this methodology the estimation of such models can be straightfor-
wardly derived through conditional intensities. With the simplicity of the conditional intensitie’s
structure in mind, different models were proposed. However, other more complicated structures
could also be adopted, for instance, the stochastic volatility duration model of Ghysels et al. (2004)
could be an interesting alternative.

With regard to the empirical application, the models and their estimations with returns from
Bayer AG, DAX index and the hypothetical portfolio were more than satisfactory. The empirical
results show that characteristics associated with previous extreme losses as well the time between
these extreme events have a significant impact on the dynamic aspects and size of future extreme
events.

On average, the models fit well in-sample for the VaR for different levels of risk, i.e., in terms
of capital requirement; the models keep necessary capital to guarantee the desired confidence
level. For some selected ACD-POT models the VaR is backtested through a comparison with
the actual losses over an out-of-the-sample period of one year. The backtesting results indicate
that the proposed methodology performs well in forecasting the risk dynamically and therefore
certainly provides a more precise estimate as the information in the data sample is exploited more
efficiently. This particularly refers to clustering of extreme events and the inter-exceedance times.
Furthermore, in comparison with others competitive models, in most of the cases the ACD-POT
models outperform the basic specifications of CAViar models introduced by Engle and Manganelli
(2004). Finally, the ACD-POT and the two stage GARCH-EVT methodology (McNeil and Frey,
2000) most often eradicate the threat of VaR violation clustering.

In summary the ACD-POT models do a very good job of modeling the inter-exceedance times
associated with waiting times between extreme events and the size of exceedances. These models
may therefore serve as a useful starting point for further extensions. Other possible directions for
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future research emerge from the results. For instance, being interested in long term behavior rather
than in short term forecasting, the simulation of ACD-POT models enables to calculate measures
of risk over other time horizons. Other research options would be different distributional assump-
tions for the standardized durations or other flexible forms of the self-exciting models, which
could be used by incorporating other characteristics of the series, such as trend of increasing ex-
ceedances or different regimes as aftershocks. Another idea is to combine ACD with another class
of self-exciting models, such as Hawkes- or ETAS- (Epidemic Type Aftershock Sequence) mod-
els. This could help to characterize other important features such as slow decay of autocorrelation
or a power-law decay between jumps. Finally, the application of these models is not only limited
to daily returns. A natural extension is to use this methodology to attain high frequency data in
order to estimate intraday measures of risk.
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Appendix A. Threshold choice for EVT

The problem of finding an optimal threshold is very subjective due to fact that we need to find a
sufficiently high threshold u above which the distribution of the excesses may be approximated by
a GPD. The parameters of the GPD may be estimated by using, for example, maximum likelihood
once the threshold u has been chosen. However, this choice is subject to a trade-off between
variance and bias.

Observe that under the ACD-POT methodology only the tail index ξ remains constant, while
the scale parameter varies throughout the time. From the point of view of the risk measures, a
robust fit to a sample of extreme events and a good estimate of risk measures, as for example
VaR, would be relatively insensitive to departures from the model. This is valuable in actual
financial problems where one of the most important objectives is to obtain a robust measure of
risk. However, EVT implementation faces many challenges, one of the most important being the
fact that EVT is designed for independent data and financial data. Stock market returns in our
case tend to be dependent, and therefore, a standard methodology for threshold selection does not
exists.

The critical point in threshold selection is that by increasing the number of observations for
the series of maxima, some observations from the centre of the distribution are introduced in the
series, and that the tail index as well as the VaR estimate are more precise but biased (i.e., there
is less variance). On the other hand, choosing a high threshold reduces the bias but makes the
estimates more unstable (i.e., there are fewer observations).

Thus, the main objective in this section is to determine how sensitive the ACD-POT framework
is to the choice of the threhold u, and in particular the VaR estimates obtained through these
models. To this end, we choose the optimal threshold indirectly, by choosing an interval where
the threshold quantile seems to be more stabile in relation to the VaR estimate. To compare the
different intervals, we computed the mean squared error (MSE) pointwise of the estimators as
follows:

• We fix in advance a grid of size 100 of possible threshold values q ∈ [0.85, . . . ,0.94], i.e.,
k = 1, . . . ,100 with q1 = 0.85 to q100 = 0.94, qk < qk+1 for all k. Further, we select different
levels for the VaR that will be estimate through an ACD-Model. In this paper we choose
α j = (0.95,0.96,0.97,0.98,0.99,0.999) for j = 1, . . . ,7.

• We choose a quantile threshold qk and estimate a suitable ACD-POT model. Since the
estimate of the VaR are time varying we compute a mean value VaR

(
qk,α j

)
for each VaR

level α j.
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Figure A.5: On the left the mean value of the VaR, VaR(qk,α j), for each VaR level α j from bottom (α1 = 0.95) to top
(α7 = 0.999) for the Bayer stock market returns. On the right side, estimated mean squared error MSE (qk−qk+1)
for different thresholds.

• To compare the different estimates, we calcule the following MSE

MSE (qk−qk+1) =
1
m

m

∑
j=1

(
VaR

(
qk,α j

)
−VaR

(
qk+1,α j

))2

• Finally, we choose the threshold by choosing an interval where the threshold quantile seems
to be more stabile.

For example, in Figure A.5 we display the analysis of threshold selection for the Bayer stock
market returns in relation to gACD2 model. On the left, to compare the VaR sensitivity of the
estimates with the threshold sensitivity, we plot the mean value of the VaR, VaR

(
qk,α j

)
, for each

VaR level α j from bottom (α1 = 0.95) to top (α7 = 0.999). For this example, and in general for
all the returns that we have considered, the threshold selection seems to have limited influence on
the VaR estimates. On the right side, we display the values of the MSE (qk−qk+1) respect to the
thresholds intervals qk−qk+1. Graphical inspection of this figure shows that a threshold between
the quantiles 0.90 and 0.92 may be the most justified. In general for most of the models estimated,
a threshold selection between these two quantiles showed a great stability.

Appendix B. Goodness of fit

Appendix B.1. Goodness of fit ACD

Kolmogorov-Smirnov test (KSACD): This test quantifies a distance between the empirical distri-
bution function of the standardized residuals of the sample and the true cumulative distribu-
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tion function assumed.

Anderson-Darling test (AD): The Anderson-Darling test is the other alternative used to test if
a sempirical distribution function of the standardized residuals came from true cumulative
distribution function assumed.

Density forecasting (χ2): we employ density forecasting techniques introduced by Bauwens et al.
(2004). They assumed parametric densities for corresponding specification of the duration
models and compared financial duration models based on the results with parametric den-
sities. They incorporated the following procedure for comparison. Under the null of iid
U(0;1) behavior of zi sequence, the joint distribution of the heights of the zi histogram is
multinomial, i.e.,

p(ni) =

(
n

p

)
pni (1− p)n−ni ,

where n is the sample size, ni is the number of observations in the i− th bin, and p = 1/m

with m equal to the number of histogram bins. By means of this idea one can compute the
Pearson’s goodness of fit statistic (χ2)

χ
2 =

m

∑
i=1

(ni−np)2

np

which is under the null hypothesis asympotically distributed Chi-squared with m−1 degrees
of freedom.

Ljung-Box test (LBACD): In addition, to check that there is no further time series structure the
Ljung-Box test is also included at lag 5.

Appendix B.2. Goodness of fit POT

W-statistics (W): we provide the W-statistics to assess our success in modelling the temporal
behaviour of the exceedances of the threshold u. The W-statistic is defined by

W = ξ
−1 ln

(
1+ξ

y−u
β (t,y |Ht)

)
.

This statistic states that if the GPD parameter model is correct, then the residuals are approx-
imately independent unit exponential variables. In practice, the independence assumption is
checked via an Ljung-Box test at lag 5.

Kolmogorov-Smirnov test (KSACD): This test quantifies a distance between the empirical distri-
bution function of the residuals of the POT model (the exceedances) and the exponential
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distribution function. The residuals should be approximately independent unit exponential
variables.

Appendix B.3. Accuracy of VaR

Test of Unconditional Coverage (LRuc): Christoffersen (1998) terms the sequence of VaR fore-
casts efficient with respect to the history Ht−1 if E [It |Ht−1] =α , where It = I(rt <−VaRt)

with I being the indicator function. Due to the fact that It |Ht−1 ∼ Ber (α), t = 1,2, . . . ,T .
Applying iterated expectations, implies that It is uncorrelated (unconditional coverage) with
any function of a variable in the information set available. This can be tested by means of a
likelihood-ratio test

LRuc = 2 [L (α̂; I1, . . . , It)−L (α; I1, . . . , It)]∼ χ
2
1 ,

where L is the log binomial likelihood. The maximum likelihood estimation α̂ is the ratio
of number of violations, n1, to the total number of obervations, T = n0 +n1.

Test of Independence (LRind): Christoffersen (1998) suggests a test of independence by model-
ing the number of violations It as a binary first order Markov chain with transition probability
matrix

Π =

[
1−π01 π01

1−π11 π11

]
, πi j = P(It = j | It−1 = i) ,

as the alternative hypothesis of dependence. The join likelihood, conditional on the first
observation is given by

L(π∗; I2, . . . , IT | I1) = (1−π01)
n00+n10 π

n01+n11
01 ,

where ni j represents the number of transitions from state i to state j. The maximum-
likelihood estimators under the alternative hypothesis are

π̂01 =
n01

n00 +n01
and π̂11 =

n11

n10 +n11
.

Under the null hypothesis of independence, we have π = π01 = π11, from which the condi-
tional binomial joint likelihood is defined as

L(π; I2, . . . , IT | I1) = (1−π01)
n00 π

n01
01 (1−π11)

n10 π
n11
11 .

Similar to the unconditional coverage test, the likelihood ratio test is given by

LRind = 2
[
L
(
π̂∗; I2, . . . , It | I1

)
−L (π̂; I2, . . . , It | I1)

]
∼ χ

2
1 .
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Conditional Coverage (LRcc): Christoffersen (1998) suggests combining the unconditional cov-
erage test and the test of independence in order to test correct conditional coverage, because
π∗ is uncontrained. Then, we have

LRcc = LRuc +LRind ∼ χ
2
2 .

We can jointly test for independence and correct coverage using the conditional coverage
test.

Ljung-Box test (LBVaR): we implement a test statistics proposed by Berkowitz et al. (2009) for
the autocorrelations of de-meaned violations Hitt (α) = It −α , which form a martingale
difference sequence. This is a Ljung-Box statistic, which is a joint test of whether the first
m autocorrelations of Hitt (α) are zero by calculating

LBVaR (m) = T (T +2)
m

∑
k=1

γ2
k

T − k

where T is the sample size, γk is the sample autocorrelation at lag k and LBVaR (m) is asymp-
totically chi-square with m degrees of freedom.

Dynamic quantile test (DQhit and DQVaR): A relevant VaR model should also feature a sequence
of VaR violations which are not serially correlated. Engle and Manganelli (2004) suggest the
Dynamic Quantile (DQ), which can jointly test the hypothesis that E [Hitt (α)] = 0 and that
Hitt (α) is uncorrelated with the variables included in the information set, where Hitt (α) =

It−α . Both tests can be done using the following artificial regression

Hitt = Xβ +u,

 −α, with probability 1−α

1−α, with probability α

,

where, under the null hypothesis, H0 = β = 0, i.e, the regressors should have no explanatory
power. Considering that the regressors are not correlated with the dependent variables under
the null hypothesis, invoking a suitable central limit theorem Engle and Manganelli (2004)
deduce the test statistic

DQ =
β̂X′Xβ̂ ′

α (1−α)
∼ χ

2
p+2,

where p is the number of explanatory variables X. In the empirical application, we use two
specifications: the dynamic quantile hit (DQhit ) test and the dynamic quantile VaR (DQVaR)
test: In the first test the regressor matrix X contains a constant and one lagged hits, while
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the second test, DQVaR, uses, in addition, the contemporaneous VaR estimate.

Tables and Figures

Indexes mean sd min max skewness
Bayer 0.027 1.826 -18.432 32.310 0.761
DAX 0.030 1.375 -9.871 7.553 -0.265

Portfolio 0.072 0.966 -6.558 6.110 -0.165

Indexes kurtosis Q(x) Q(x2) Jarque-Bera ADW
Bayer 26.12 5.41 76.78* 134489.50* -17.59*
DAX 4.32 4.86 1237.71* 3724.86* -16.08*

Portfolio 4.03 42.90* 222.48* 1629.01* -12.91*

Table B.1: Summary statistics for the returns. Asymptotic p-value are shown in the brackets. *,**,*** denote sta-
tistical significance at the 1, 5 and 10 % level respectively. The Ljung-Box test statistic (Q) for serial correlation is
calculated up to the 5-th order.
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Models Parameters Loglike AIC
ACD Model POT model (mAIC)

w a1 b1 δ γ k ξ ω β1 β2 β3

Bayer returns
bACD3 1.050 0.220 0.733 0.951 1.443 0.085 0.761 3.8e-07 19.45 2.15 -2035.40 4090.79

(0.4957) (0.059) (0.058) (0.122) (0.135) (0.104) (0.042) (0.01) (18.72) (0.68) (4056.79 )

bLog-ACD3 0.276 0.157 0.777 0.951 1.455 0.093 0.762 2.7e-07 16.755 2.072 -2034.74 4089.49

(0.109) (0.032) (0.054) (0.115) (0.133) (0.114) (0.042) (0.01) (16.38) (0.712) (4055.49)

bEXACD4 0.139 0.162 0.887 1e-04 0.992 1.533 0.088 0.665 0.174 0.077 0.291 -2030.90 4083.80

(0.101) (0.038) (0.041) (0.009) (0.124) (0.148) (0.089) (0.112) (0.040) (0.028) (0.416) (4047.8)

gACD3 0.738 0.165 0.760 0.192 21.219 0.086 0.728 5.5e-06 19.477 2.078 -2024.44 4068.88

(0.274) (0.036) (0.050) (0.046) (10.243) (0.104) (0.042) (0.008) (15.189) (0.547) (4032.88 )

gLog-ACD3 0.208 0.138 0.804 0.107 68.860 0.089 0.765 3.8e-06 28.094 2.353 -2021.46 4062.93

(0.077) (0.029) (0.050) (0.038) (49.283) (0.123) (0.042) (0.008) (33.925) (0.867) (4026.93 )

gLog-ACD4 0.187 0.122 0.826 0.117 60.007 0.091 0.663 0.170 0.075 0.279 -2018.10 4056.19

(0.083) (0.031) (0.056) (0.038) (38.884) (0.088) (0.041) (0.098) (0.027) (0.366) (4032.19 )

DAX returns
bACD4 1.273 0.189 0.789 1.237 1.938 0.025 0.583 0.104 0.122 1.572 -1880.416 3780.831

(0.633) (0.071) (0.054) (0.141) (0.225) (0.066) (0.034) (0.086) (0.036) (1.779) (3770.83)

bLog-ACD4 0.234 0.117 0.829 1.156 1.831 0.025 0.583 0.103 0.122 1.578 -1881.022 3782.044

(0.093) (0.029) (0.046) (0.127) (0.200) (0.066) (0.034) (0.086) (0.036) (1.790) (3770.04)

bEXACD4 0.147 0.173 0.900 4.2e-09 1.217 1.898 0.025 0.583 0.103 0.122 1.578 -1883.375 3788.749

(0.088) (0.063) (0.034) (0.005) (0.143) (0.222) (0.066) (0.086) (0.034) (0.036) (1.783) (3752.75)

gACD3 0.793 0.195 0.716 0.132 47.998 0.021 0.580 0.071 32.091 2.706 -1880.545 3781.09

(0.253) (0.043) (0.056) (0.049) (35.808) (0.070) (0.037) (0.054) (29.011) (0.626) (3749.09)

gLog-ACD2 0.156 0.152 0.815 0.100 83.770 0.033 0.373 0.094 3.298 -1881.169 3780.337

(0.052) (0.030) (0.042) (0.019) (32.351) (0.039) (0.076) (0.056) (0.574) (3752.34)

gLog-ACD3 0.200 0.167 0.783 0.121 57.682 0.021 0.569 0.077 22.461 2.433 -1877.519 3775.037

(0.061) (0.029) (0.043) (0.038) (36.433) (0.076) (0.037) (0.055) (19.376) (0.602) (3747.04)

Portfolio returns
bACD2 0.709 0.213 0.741 0.682 1.223 0.093 0.176 0.053 3.167 -894.858 1807.717

(0.397) (0.057) (0.062) (0.158) (0.133) (0.071) (0.089) (0.069) (0.977) (1779.72)

bACD4 0.859 0.183 0.747 0.651 1.224 0.087 0.248 0.075 0.026 7.3e-06 -893.091 1806.182

(0.504) (0.054) (0.072) (0.176) (0.140) (0.078) (0.071) (0.038) (0.017) (0.027) (1778.18)

bLog-ACD4 0.224 0.140 0.799 0.703 1.268 0.087 0.249 0.075 0.026 8.4e-05 -893.339 1806.679

(0.106) (0.035) (0.058) (0.154) (0.138) (0.077) (0.071) (0.038) (0.017) (0.028) (1770.68)

gACD2 0.799 0.197 0.739 0.146 37.661 0.093 0.184 0.058 2.964 -887.878 1793.756

(0.403) (0.051) (0.063) (0.062) (31.544) (0.071) (0.081) (0.067) (0.844) (1759.76)

gACD4 0.962 0.170 0.744 0.168 29.118 0.088 0.251 0.073 0.026 0.025 -886.505 1793.01

(0.523) (0.051) (0.074) (0.073) (25.022) (0.124) (0.081) (0.093) (0.017) (1.085) (1757.01)

gLog-ACD4 0.249 0.132 0.791 0.174 27.432 0.087 0.249 0.075 0.026 3.7e-05 -886.966 1793.931

(0.116) (0.034) (0.063) (0.076) (23.756) (0.075) (0.072) (0.038) (0.016) (0.024) (1757.93)

Table B.2: Results of the estimation of all ACD-POT models with distributional assumption Burr for the standardized
durations of the inter-exceedance times for Bayer returns. Standard deviations are given in parentheses. Loglike are
the results of the maximization of the log-likelihood estimation and AIC is the Akaike Information Criterion.
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Models GoF ACD Gof POT Accuracy VaR
KSACD AD Chisq LBPOT W KSPOT α failures LRuc LRind LRcc LBVaR DQhit DQVaR

bACD3 0.07 0.06 0 0.68 0.43 0.11 0.05 238 0.84 0.15 0.35 0.13 0.15 0.3

0.01 43 0.55 0.4 0.59 0.32 0.4 0.49

0.001 9 0.08 0.86 0.21 0.91 0.86 0.01

bLog-ACD3 0.19 0.07 0.01 0.64 0.41 0.12 0.05 238 0.84 0.25 0.50 0.23 0.25 0.51

0.01 39 0.23 0.33 0.30 0.22 0.33 0.56

0.001 8 0.17 0.88 0.38 0.92 0.88 0.02

bEXACD4 0.05 0.06 0 0.50 0.15 0.11 0.05 264 0.06 0.06 0.03 0.05 0.06 0.04

0.01 49 0.77 0.01 0.05 0 0.01 0.02

0.001 10 0.03 0.84 0.10 0.90 0.84 0.26

gACD3 0.23 0.20 0 0.70 0.47 0.16 0.05 223 0.42 0.1 0.18 0.08 0.10 0.25

0.01 38 0.17 0.31 0.23 0.20 0.31 0.5

0.001 7 0.32 0.89 0.61 0.93 0.89 0.07

gLog-ACD3 0.54 0.24 0.09 0.73 0.42 0.12 0.05 230 0.74 0.09 0.22 0.07 0.09 0.15

0.01 37 0.13 0.29 0.18 0.18 0.29 0.31

0.001 6 0.56 0.91 0.84 0.94 0.91 0.23

gLog-ACD4 0.25 0.15 0.01 0.72 0.16 0.08 0.05 249 0.35 0.03 0.07 0.02 0.03 0

0.01 42 0.46 0.06 0.12 0.01 0.06 0.01

0.001 8 0.17 0.88 0.38 0.92 0.88 0.79

CAViaRad - - - - - - 0.05 236 0.97 0.51 0.8 0.5 0.52 0

0.01 47 0.99 0.48 0.78 0.42 0.49 0

0.001 4 0.74 0.94 0.94 0.97 0.94 0

CAViaRsa - - - - - - 0.05 235 0.98 0.83 0.98 0.83 0.84 0

0.01 48 0.89 0.51 0.79 0.45 0.51 0

0.001 5 0.89 0 0.01 0 0 0

CAViaRas - - - - - - 0.05 238 0.86 0.76 0.94 0.76 0.77 0

0.01 47 0.99 NA NA 0.5 0.34 0

0.001 6 0.57 0.91 0.84 0.94 0.91 0

CAViaRGARCH - - - - - - 0.05 248 0.41 0.57 0.6 0.56 0.58 0

0.01 50 0.67 0.55 0.77 0.51 0.55 1

0.001 9 0.08 0.86 0.21 0.91 0.86 0

CondN - - - 0 0 - 0.05 224 0.44 0 0.01 0 0 0.01

0.01 35 0.06 0.03 0.01 0 0.03 0.07

0.001 8 0.17 0.88 0.38 0.92 0.88 0.73

CondT - - - 0 0 - 0.05 231 0.77 0.01 0.02 0 0.01 0.03

0.01 35 0.06 0.03 0.01 0 0.03 0.07

0.001 9 0.08 0.86 0.21 0.91 0.86 0.46

CondST - - - 0 0 - 0.05 238 0.86 0.01 0.04 0.01 0.01 0.05

0.01 34 0.04 0.24 0.07 0.12 0.24 0.22

0.001 8 0.17 0.88 0.38 0.92 0.88 0.01

Table B.3: Goodness of fit (GoF), to assess the predictive performance in-sample of the models under consideration for
the Bayer returns, we divide these into: GoF for inter-exceedante times (GoF ACD), GoF for the marks or exceedances
(GoF POT) and measures of accuracy for the VaR. Entries in the columns are the significance levels (p-values) of the
respective tests, with exception of the level α and the number of violations at the VaR. The cells with values NA
means that the test can not be estimated.

39



Models GoF ACD GoF POT Accuracy VaR
KSACD AD Chisq LBACD W KSPOT α failures LRuc LRind LRcc LBVaR DQhit DQVaR

bACD4 0 0 0 0.72 0.91 0.77 0.05 335 0 0.01 0 0 0.01 0.02

0.01 75 0 0 0 0 0 0

0.001 10 0.03 0.84 0.10 0.88 0.84 0.72

bLog-ACD4 0 0 0 0.71 0.92 0.76 0.05 327 0 0.01 0 0.01 0.01 0.03

0.01 71 0 0 0 0 0 0

0.001 9 0.08 0.85 0.21 0.90 0.85 0.77

bEXACD4 0 0 0 0.78 0.92 0.76 0.76 334 0 0 0 0 0 0.01

0.01 73 0 0 0 0 0 0

0.001 10 0.03 0.84 0.1 0.88 0.84 0.72

gACD3 0.32 0.15 0.00 0.44 0.81 0.77 0.05 244 0.54 0.22 0.38 0.20 0.22 0.44

0.01 45 0.77 0.08 0.20 0.02 0.08 0.04

0.001 7 0.32 0.89 0.61 0.92 0.89 0.34

gLog-ACD2 0.24 0.16 0.00 0.61 0.86 0.84 0.05 239 0.77 0.26 0.51 0.24 0.26 0.01

0.01 41 0.37 0.05 0.10 0.01 0.05 0.13

0.001 7 0.32 0.89 0.61 0.92 0.89 0.08

gLog-ACD3 0.22 0.12 0.00 0.49 0.71 0.58 0.05 246 0.45 0.24 0.38 0.22 0.24 0.09

0.01 37 0.13 0.03 0.03 0.00 0.03 0.08

0.001 5 0.89 0.92 0.99 0.94 0.92 0.34

CAViaRad - - - - - - 0.05 236 0.97 0.35 0.65 0.33 0.36 0

0.01 47 0.99 NA NA 0.49 0.33 0

0.001 6 0.57 0.90 0.84 0.93 0.90 0

CAViaRsa - - - - - - 0.05 235 0.98 0.59 0.86 0.59 0.60 0

0.01 48 0.89 0.52 0.80 0.46 0.52 0

0.001 6 0.57 0.90 0.84 0.93 0.90 0

CAViaRas - - - - - - 0.05 237 0.91 0.75 0.94 0.74 0.75 0

0.01 48 0.89 NA NA 0.48 0.32 0

0.001 4 0.74 0.93 0.94 0.95 0.93 0

CAViaRGARCH - - - - - - 0.05 238 0.86 0.09 0.23 0.07 0.10 0

0.01 48 0.89 0.52 0.80 0.46 0.52 0

0.001 5 0.89 0.92 0.99 0.94 0.92 0

CondN - - - 0 0 - 0.05 219 0.14 0.18 0.11 0.15 0.05 0.01

0.01 40 0 0.01 0 0 0.01 0.07

0.001 3 0.95 0.70 0.97 0.95 0.26 0.73

CondT - - - 0 0 - 0.05 220 0.30 0.04 0.07 0.03 0.05 0.14

0.01 38 0.17 0.04 0.05 0 0.04 0.01

0.001 7 0.32 0.89 0.61 0.92 0.89 0

CondST - - - 0 0 - 0.05 225 0.48 0.11 0.23 0.09 0.12 0.31

0.01 42 0.45 0.01 0.02 0 0.01 0

0.001 7 0.32 0.89 0.61 0.92 0.89 0.57

Table B.4: Goodness of fit (GoF), to assess the predictive performance in-sample of the models under consideration for
the DAX returns, we divide these into: GoF for inter-exceedante times (GoF ACD), GoF for the marks or exceedances
(GoF POT) and measures of accuracy for the VaR. Entries in the columns are the significance levels (p-values) of the
respective tests, with exception of the level α and the number of violations at the VaR. The cells with values NA
means that the test can not be estimated.
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Models GoF ACD GoF POT Accuracy VaR
KSACD AD Chisq LBPOT W KSPOT α failures LRuc LRind LRcc LBVaR DQhit DQVaR

bACD2 0 0 0 0.32 0.82 0.61 0.05 119 0.95 0.02 0.07 0.01 0.02 0.02

0.01 26 0.63 0.45 0.67 0.59 0.45 0.50

0.001 5 0.14 0.88 0.33 0.92 0.88 0.98

bACD4 0 0 0 0.38 0.67 0.97 0.05 114 0.68 0.03 0.08 0.01 0.03 0.03

0.01 23 0.89 0.50 0.79 0.63 0.50 0.49

0.001 4 0.33 0.91 0.62 0.93 0.91 0.75

bLog-ACD4 0 0 0 0.27 0.67 0.96 0.76 113 0.61 0.13 0.28 0.10 0.13 0.19

0.01 23 0.89 0.50 0.79 0.63 0.50 0.49

0.001 4 0.33 0.91 0.62 0.93 0.91 0.77

gACD2 0.35 0.37 0.06 0.20 0.74 0.89 0.05 113 0.61 0.13 0.28 0.10 0.13 0.05

0.01 30 0.21 0.38 0.31 0.53 0.38 0.62

0.001 3 0.69 0.93 0.92 0.95 0.93 0.94

gACD4 0.40 0.29 0.05 0.21 0.68 0.97 0.05 114 0.68 0.14 0.31 0.11 0.14 0.11

0.01 22 0.73 0.52 0.77 0.65 0.52 0.55

0.001 4 0.33 0.91 0.62 0.93 0.91 0.72

gLog-ACD4 0.50 0.38 0.17 0.17 0.68 0.95 0.05 110 0.43 0.10 0.18 0.07 0.10 0.09

0.01 22 0.73 0.52 0.77 0.65 0.52 0.60

0.001 4 0.33 0.91 0.62 0.93 0.91 0.75

CAViaRad - - - - - - 0.05 120 0.92 0.24 0.49 0.21 0.25 0

0.01 24 0.96 0.48 0.78 0.62 0.49 0

0.001 3 0.70 0.93 0.92 0.95 0.93 0

CAViaRsa - - - - - - 0.05 119 0.99 0.99 1.00 0.99 0.98 0

0.01 23 0.87 0.50 0.79 0.63 0.50 0

0.001 2 0.80 0.95 0.97 0.97 0.95 0

CAViaRas - - - - - - 0.05 119 0.99 0.40 0.70 0.38 0.41 0

0.01 24 0.96 0.48 0.78 0.62 0.49 0

0.001 2 0.80 0.95 0.97 0.97 0.95 0

CAViaRGARCH - - - - - - 0.05 120 0.92 0.43 0.72 0.41 0.44 0

0.01 24 0.96 0.24 0.50 0.12 0.24 0

0.001 3 0.70 0.93 0.92 0.95 0.93 0

CondN - - - 0.31 0.30 - 0.05 106 0.22 0 0.01 0 0 0.01

0.01 20 0.42 0.56 0.61 0.68 0.56 0.58

0.001 3 0.70 0.93 0.92 0.95 0.93 0.84

CondT - - - 0.31 0.42 - 0.05 107 0.26 0 0 0 0 0

0.01 18 0.21 0.60 0.40 0.71 0.60 0.65

0.001 3 0.70 0.93 0.92 0.95 0.93 0.74

CondST - - - 0.31 0.28 - 0.05 110 0.4 0.01 0.01 0 0.01 0.01

0.01 19 0.31 0.58 0.51 0.69 0.58 0.78

0.001 3 0.70 0.93 0.92 0.95 0.93 0.76

Table B.5: Goodness of fit (GoF), to assess the predictive performance in-sample of the models under consideration
for the Portfolio returns, we divide these into: GoF for inter-exceedante times (GoF ACD), GoF for the marks or
exceedances (GoF POT) and measures of accuracy for the VaR. Entries in the columns are the significance levels
(p-values) of the respective tests, with exception of the level α and the number of violations at the VaR. The cells with
values NA means that the test can not be estimated.
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