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Abstract 

Primary concerns for traders since the deregulation of electricity markets include both the 

selection of optimal trading limits and risk quantification. These concerns came about as a 

consequence of unique stylized attributes exhibited by electricity spot prices, such as clustering of 

extremes, heavy-tails and common spikes. The authors of this paper propose self-exciting marked 

point process (SEMPP) models, which can be defined in terms of durations or intensities and which 

can capture these stylized facts. This approach consists of modeling the times between extreme 

events and the size of exceedances which surpass a high threshold. Empirical results for four major 

electricity spot markets in Australia show evidence of dependence between occurrence times of 

extreme returns. This finding is directly related to the future behavior of the stochastic intensity 

process for price spikes. In addition, the proposed approach provides a more accurate one-day-

ahead value at risk (VaR) forecasting in electricity markets than standard stochastic volatility 

models. 

Keywords: Extreme value theory, autoregressive conditional duration, ACD-POT, Hawkes-POT, 

forecasting risk measures 

 



 

 

1. Introduction 

Electricity spot markets are a challenging research area due to the unique characteristics of 

energy markets, such as the fact that any rise in demand or any drop in production needs to be 

addressed by the trader, often with a high marginal cost. This highly inelastic demand is often 

responsible for price jumps to extreme levels, a characteristic known as a “spike” in the literature. 

For instance, spot price spikes in Australia’s National Electricity Market (NEM) can peak at levels 

above AUD$1000/MWh, while it is also common to observe daily prices reaching levels between 

AUD$100/MWh and AUD$1000/MWh, each of which can be described as extremely high prices 

(Becker & Hurn, 2007; Christensen et al., 2012; Clements et al., 2013). Compared to other financial 

markets, risk management in the electricity market is a relatively new area introduced after the 

restructuring of the Australian electricity industry in the late 1990s. Most of the approaches to the 

electricity spot prices focus on predicting the series’ next prices (Conejo et al., 2005; Soares & 

Medeiros, 2008; Karakatsani & Bunn 2008; Chan et al, 2008), mainly because prices in the spot 

market are highly volatile and the spot price can spike to several hundred times the average price 

within a short period. 

 An assumption made in most of these approaches is the memory-free nature of the spikes’ 

behavior. However, current research on electricity prices have found evidence that the time 

between spikes has a significant impact on the likelihood of future occurrences (Christensen et al., 

2009; Christensen et al., 2012; Clements et al. 2013). For this reason, the aim of this paper is to 

determine if the times between past extreme events of electricity spot price returns involve some 

information which can be used to forecast the future behavior of these returns.  

The contribution of this paper to the existing state of knowledge in the modeling of extreme 

movements in electricity prices is twofold. First, we introduce a framework that captures the short-

term behavior of extreme events in electricity spot price returns based on the most recent extreme 

event times and some exogenous covariates, which are believed to influence the behavior of these 

events. In particular, we include three components as covariates. The first covariate is the electricity 

load, which is characterized by a varying behavior due to customer portfolios as a result of the 

liberalization of the Australian electricity market. The second covariate is temperature, which can 



 

 

affect electricity demand and production. For example, in a dry year, if the main source is 

hydropower, it will not be possible to produce the normal amount of electricity. It would therefore be 

necessary to look for alternatives which may result in more expensive production methods 

(Golombek et al., 2012). The third covariate is the exceedance sizes of these spike prices returns, 

which, according to other stock market applications, could have a direct relation with the time of 

occurrence between these events.1 

We propose a self-exciting marked point process (SEMPP) framework, which can be 

defined in terms of duration-based or intensity-based approaches. The duration-based approach 

corresponds to an autoregressive conditional duration peaks over threshold (ACD-POT) model 

(Herrera & Schipp, 2013), while the intensity-based approach corresponds to a Hawkes model for 

the exceedance times combined with a peaks over threshold model (Hawkes-POT) for the marks 

(Chavez-Demoulin et al., 2005; Chavez-Demoulin & McGill, 2012). These models allow us to 

concentrate only on these extreme events, rather than the entire dataset, providing risk measures 

via which traders can select optimal trading limits. 

The authors of this paper also apply these new models to four major electricity markets in 

Australia: New South Wales, Queensland, South Australia and Victoria. The models are compared 

using a competing approach, the AR-APARCH-EVT, giving better results for the one-day-ahead 

value at risk (VaR) forecast out-sample.  

The results obtained by this investigation indicate a significant improvement in the 

forecasting of different risk measures, overall accuracy and backtesting analysis. The most 

interesting result in this paper is the significant evidence of dependence between inter-exceedance 

times (the time between extreme events) in the markets, which are directly related to the intensity of 

the stochastic process of price spikes.  

The rest of this paper is organized as follows: Section 2 presents a literature review dealing 

with electricity spot prices. Section 3 describes the proposed approach, introducing the ACD-POT 

                                                           
1 Chavez-Demoulin & McGill (2012) showed that for high frequency data of stock markets, the impact of large 
losses on the intensity of the process is driven by the amplitude of the losses, and decreases in relation to the 
time between extreme events. 



 

 

and Hawkes-POT models and their parameterizations. In Section 4, the Australian electricity 

markets are analyzed using the proposed methodology. Section 5 presents the conclusions. 

2. Literature Review 

The daily spot prices in the electricity markets exhibit interesting stylized facts at both intra-

day and daily levels. These stylized facts include mean reverting, high volatility, price spikes and 

jump clustering (Karakatsani & Bunn, 2008; Klüppelberg et al, 2010). Price spikes present a 

common problem in electricity markets and, therefore, various approaches have been proposed in 

the literature to explain these. Three main frameworks are highlighted below.  

The first considers modeling the spot price, or return trajectory, by means of classical time 

series. For instance, Conejo et al. (2005) present a review on autoregressive moving average 

(ARMA) and autoregressive moving average with exogenous inputs (ARMAX) models, while Higgs 

(2009) considers a generalized autoregressive conditional heteroskedasticity (GARCH) process. 

Other approaches address modeling the price spikes through Markov switching models (Kosater & 

Mosler, 2006; Becker & Hurn, 2007) or Markov diffusion processes (Higgs & Worthington, 2008; 

Meyer-Brandis & Tankov, 2008).  

The second set of approaches focus on the estimation and forecasting of risk measures for 

both short- and long-trading positions in electricity markets. In particular, Vehviläinen and Keppo 

(2004), based on both stochastic consumption and prices, propose hedging strategies in the Nordic 

electricity market using VaR as a risk measure. Deng & Jiang (2005) introduce a Levy process-

driven Ornstein-Uhlenbeck stochastic model for electricity prices, and propose VaR and expected 

shortfall (ES) as important measures of portfolio diversification. Byström (2005) and Chan & Gray 

(2006) compute VaR by means of extreme value theory (EVT) and adjust the volatility in the time 

series with a GARCH model.  

The third alternative is focused on forecasting the likelihood of extreme price events, rather 

than on the trajectory of the price. In particular, Christensen et al. (2009) introduce a Poisson 

autoregressive framework and Christensen et al. (2012) present an autoregressive conditional 

hazard (ACH) model to forecast extreme price events. Similarly, Clements et al. (2013) proposed a 

semi-parametric nonlinear variant of the ACH model for forecasting spikes. The forecast results 



 

 

obtained using these approaches, based in discrete point processes, seem to be more accurate 

than the previous approaches. In particular, this semi-parametric nonlinear variant produces better 

results out-sample, which is attributable to the ability of the approach to capture the inherent 

nonlinearity in the spike process. 

In the same line, the basic framework in our research is based on continuous SEMPP. In 

particular, we introduce some variants of the ACD-POT (Herrera & Schipp, 2013) and Hawkes-POT 

(Chavez-Demoulin & McGill, 2012) approaches, which model the dependence between the inter-

exceedance times. Employing this method, we concentrate on forecasting the VaR rather than 

predicting spot prices. Through this model, a trader is able to plan a strategy for their bidding on the 

spot market for upcoming periods. 

3. Methodology 

3.1 A point process approach to extreme value theory  

Let us assume we have observed the extreme returns ��, … , �� of a known electricity spot 

market. These extreme returns could be the consequence of price spikes observed, e.g., during 

periods of high inelastic demand, supply shifts or extreme temperatures. Moreover, assume that the 

observations are, for the moment, independent and identically distributed (iid) random variables 

with distribution function F and	�� = max���, … , ��. We consider a point process approach to those 

observations with magnitudes exceeding a high, previously defined threshold	� > 0.  

A point process is a collection of random variables in some space; in our case, ���� , ���:	� =
1,… , � defines a subset of observations where �� corresponds to the occurrence time of the 

extreme return	��, whose magnitude is higher than the threshold	�. We denote by Ω = �0,1� × ���,∞�� 
the space for which this two-dimensional point process is defined.2  

According to the classical point process approach to EVT (see Pickands, 1971; Smith, 1990), 

this two-dimensional point process approach corresponds to a non-homogeneous Poisson process 

with the intensity at the position ��, �� given by:  

                                                           
2
 Notice that the time has been rescaled to the interval (0,1) to simplify the exposition. 



 

 

���, �� = 1� �1 + ! � − #� $%
&�'&�, (1) 

where �(�% = max�0, ( denotes the positive part of (. In this equation, � > 0 is a scale parameter, 

while #	and	! ∈ 	ℝ are the location and shape parameters, respectively. Consequently, the 

corresponding intensity measure of this process for a subset ���, �,� × ��,∞� ⊆ Ω is given by: 

Λ����, �,� × ��,∞� = . . ��/, 0�∞

1

23
24

5/	50 = −��� − �,� ln7���',8,9 , 
when 0 ≤ �� ≤ �, ≤ 1, and 7',8,9 is actually the generalized extreme value distribution given by: 

7���',8,9 =
;<=
<>exp A− �1 + ! � − #� $&�' B , ! ≠ 0
exp D−exp�−� − #� $E , ! = 0.

� 

Thus, this type of point process is completely characterized by its intensity. However, stylized facts, 

such as extreme price volatility, spikes, jump clustering, fat tails, autocorrelation and seasonality, 

exhibited by electricity spot markets make the direct use of this theory impossible. For this reason, 

we propose a more flexible framework that takes these stylized facts into account. 

3.2 SEMPP approach to EVT 

A SEMPP is a rich class of stochastic processes that allows us to use the information 

provided by the dynamic interactions among the inter-exceedance times of extreme events and 

their magnitudes. A SEMPP G��� is a point process in which some additional features are 

measured at each point	�, and whose conditional intensity depends on the history of the 

process	ℋ2 = H���, ��, … , I�J�2�&�, �J�2�&�KL. The key features of a SEMPP are: a ground point 

process GM��� which only characterizes the stochastic process of the occurrence time of the 

extreme events; and the process of the marks, which describes the magnitude of the extreme 

events associated with the ground process. The conditional intensity of this class of process is 

given by: 

                                                                                ���, �|ℋ2� = �M��|ℋ2�O��|ℋ2 , ��. (2) 



 

 

In our case, the ground process corresponds to the occurrence time of the extreme losses and the 

marks correspond to the size of an exceedance. Under this framework, the intensity (1) can be 

rewritten as:  

                                            ���, �� = PQR �1 + ! 1&SR $%&
4T&�, (3) 

where U = � + !�� − #� is a redefined scale parameter. Observe that under this reparameterization, 

�M  corresponds to the rate of a Poisson process of the exceedances of the threshold	� via: 

�M��|ℋ2� = Λ��0,1� × ��,∞� = − ln7���',8,9 ≔ �M, 
while the rest of (3) defines the probability density function of the marks: 

																																		O���',8,R		 =
;<=
<>1U W1 + ! � − �U X%

&�'&� , ! ≠ 0
1U exp W−� − �U X , ! = 0,

� (4) 

which by definition is approximately a generalized Pareto density (GPD) function.3  

Since inter-exceedance times of extreme events in electricity spot markets are irregularly 

spaced and show clustering, we propose that a SEMPP can be adopted for the purpose of spike 

modeling.4 In particular, we consider two alternatives for the specification of a SEMPP: the duration-

based (ACD-POT model) and the intensity-based approach (Hawkes-POT).  

3.2.1 ACD-POT model 

In the ACD-POT approach, the conditional intensity function of the ground process is 

modeled using the duration of the inter-exceedance times	(� = �� − ��&�. The idea is to standardize 

the durations utilizing the most recent history, with Y�	serving as conditional mean function of the 

current duration Z�(�|ℋ2� ≔ Y� and [� = \]^�_]� serving as the standardized durations. The complete 

ground process for the ACD-POT model is defined by: 

�M��|ℋ2� = �` W 2&2a�b�^H_a�b�LX �^H_a�b�L, (5) 

                                                           
3 See Theorem 3.4.13 Embrechts et al. (1997). 
4 See for instance Hautsch (2012) for a review of these models. 



 

 

where c is a positive function that standardizes the durations, and �` is a baseline function which 

corresponds to a hazard function, depending on the selected probability distribution function for the 

standardized durations and the specification of Y�. 
Consider, first, the specification of the conditional mean function. The main types of ACD 

parameterizations that have been suggested in the financial econometrics literature are the linear 

ACD model (Engle & Russell, 1998) and the Logarithmic ACD (LogACD) model (Bauwens & Giot, 

2000)5. In our setup, the conditional mean function takes the following forms: 

Y� − d� = e +fgh(�&h
i
hj�

+fkh�Y� − d��
l
hj�

 
(6) 

for the linear ACD model, and  

Y� − d� = e +fgh ln (�&h
i
hj�

+fkhHY�&h − d�&hL
l
hj�

 
(7) 

for the LogACD.6 In this type of model, m and n are non-negative integers indicating the order of the 

autoregressive terms, while	gh, kh and e are constant coefficients. Observe that these models also 

include a set of covariates represented by the component	d�, which will be described in detail in 

Section 4.2.7  

We also need to specify the probability distribution function of the standardized durations. 

Several alternative choices are plausible, with high degrees of flexibility at the expense of high 

complexity. In this paper, the authors consider two alternatives; the generalized gamma (Lunde, 

1999) and the Burr (Grammig & Maurer, 2000). The generalized gamma distribution has the 

probability density function: 

o�(|�, p, q� = q(rs&��rsΓ�p� exp t− �(�$su ,			where		� > 0, q > 0	and	p > 0. 
To obtain standardized durations with mean one, we have to fix	� = 1, which implies that c�Y�� =
Y�Γ�p�/Γ�p + 1/q�. The second option is the Burr, whose probability density function is: 

                                                           
5 Both Linear ACD and LogACD present only linear relations between observations. Other alternatives, such 
as Box-Cox ACD and Exponential ACD, show non-linear relations, but were ultimately disregarded in the 
analysis as they failed to produce more significant results over linear models. 
6 Observe that the LogACD model suggests a multiplicative relationship on durations. 
7 For proof that both models are stationary and that the unconditional expected duration exists for each model, 
we refer to Hautsch (2012). 



 

 

o�(|�, p, q� = �p�r&�
�1 + q,��r�sz3%� , where		� > 0, q > 0	and	p > 0. 

In this case, c�Y�� = Y� γ3��%�/{�ΓHγz3%�LΓ��%�/{�Γ�γz3&�/{�, where 0 < γ&, < p. Both distribution functions have shown 

a high flexibility in the context of irregularly spaced modeling due to the non-monotone behavior of 

their hazard functions. This feature is of particular importance if we are interested in models, which 

after one observed electricity price spike, can adapt rapidly in periods where temporarily high 

demand must be met by generating its power at premium prices. 

At this point, after the specification for the ground process, we are ready to parameterize 

the density of exceedance sizes of these spike price returns. Recent studies in SEMPP applied in 

the context of financial risk have shown that models, where the scale parameter β of the GPD in (4) 

varies over time, display a better fit and performance in backtesting (Chavez-Demoulin et al., 2005; 

Chavez-Demoulin & McGill, 2012; Herrera & Schipp, 2013). We propose a linear specification for 

the scale parameter: 

U��|ℋ2� = U` + U��M��|ℋ2�,	 (8) 

where the exceedances are conditionally generalized Pareto distributed, given the exceedance 

history up to the time of the mark, with the coefficients being positive.8 Replacing (5) and (4) in (2), 

we finally obtain the conditional intensity function defined for an ACD-POT model: 

���, �|ℋ2; �� = �` � � − �J���cHYJ���L�
1

cHYJ���LU��|ℋ2� W1 + !
� − �
U��|ℋ2�X%

&� '&�� .	 (9) 

3.2.2 Hawkes-POT Model 

Introduced preliminarily in Chavez-Demoulin et al. (2005) and detailed recently in Chavez-

Demoulin & McGill (2012), the Hawkes-POT model is an alternative to the ACD-POT model. The 

main advantage of the Hawkes-POT model as opposed to the ACD-POT approach is that we 

directly parameterize �M��|ℋ2� which allows for updating of the intensity process whenever 

required. We propose the direct inclusion of the covariates in the self-exciting function of the 

                                                           
8
 Other specifications for scale parameter have also been investigated, but this simple approach seems to be 

the most robust and with an easy economic interpretation (for other specifications, see Herrera & Schipp, 
2013). 



 

 

Hawkes process, which is governed by the sum of exponential functions of the covariates and the 

time to all previous extreme events: 

�M��|ℋ2� = e + gf exp	Id� − kH� − �hLK
J�2�
hj�

, 
(10) 

where all parameters have positive values. The parameter e corresponds to the baseline, the 

parameter k determines the decay function of influence of past extreme events and g determines 

the amplitude. Also here, the component 	d� represents a set of covariates.  

Observe that, unlike the ACD-POT approach, where the covariates influence the conditional 

mean function, the Hawkes-POT model considers that the covariates affect the intensity of the 

ground process directly. Similar to the scale parameterization in (8) for the ACD-POT approach, 

Chavez-Demoulin et al. (2005) propose the following structure for the Hawkes-POT model: 

U��|ℋ2� = U` + U�fexp	Id� − kH� − �hLK
J�2�
hj�

. (11) 

Both specifications for the scale parameter (8) and (11) are justified under the assumption that both 

the frequency and the magnitude of extreme events increase during periods of turmoil in electricity 

spot markets simultaneously. Finally, the estimation of the ACD-POT and the Hawkes-POT models 

is performed by maximizing the log-likelihood in terms of the conditional intensity, as follows: 

0 = f lnJ���
�j�

�M���|ℋ2� − .�M��|ℋ��5�
�
`

+ f lnJ���
�j�

O��|ℋ2 , ��. 

3.2.3 Conditional risk measures based on SEMPP 

Chavez-Demoulin & McGill (2012) and Herrera & Schipp (2013) show how electricity 

companies can track their exposure to individual market risk factors by using measures such as 

VaR estimated by means of the SEMPP approach. The conditional VaR for a confidence level � is 

obtained as follows: 

�g��2%� = � + U��|ℋ2�! �� 1 − ��M��|ℋ2��
&' − 1�. 



 

 

The main advantage of this approach is its simplicity, which expresses the total risk exposure in a 

single number. 

4. Application to Australian electricity spot markets  

4.1 Data description 

In this paper, the authors concentrate on four major electricity markets in Australia: New 

South Wales (NSW), Queensland (QLD), South Australia (SA) and Victoria (VIC). The data for the 

estimations correspond to the daily Regional Reference Price (RPP, in AUD$/MWh), the maxima 

temperatures in degrees Celsius, and the load, which is defined as the electrical power requirement 

(MW).9  

The sample covers 3228 daily observations, dating from March 1, 2001 to December 31, 

2009; a second sample with 1096 observations, dating from January 1, 2010 to December 31, 

2012, is used for backtesting. Table 1 presents descriptive statistics for these log-prices. We report 

distributional statistics of log-prices instead of the spot price itself, because the models will be 

based on daily log-price returns. These series of returns exhibit the following stylized facts: extreme 

values for maxima and minima, and skewness and heavy-tails, denoted by excess kurtosis. 

Moreover, we test if the log-prices are normally distributed and uncorrelated through the Jarque-

Bera and the Box-Pierce statistics, respectively. All the log-prices analyzed reject the null 

hypothesis. In relation to the analyses of stationary by means of the ADF-test, all log-prices reject 

the null hypothesis of non-stationary at the 0.01 level of significance. These results coincide with 

the results of other authors (Higgs & Worthington, 2008; Higgs, 2009). For a compressed and well-

documented study of the stylized facts of spot prices in the Australian wholesale electricity market 

we refer to Becker & Hurn (2007). 

< Insert Table 1 about here> 

4.2 Covariates driving price spikes 

An important attribute of electricity spot prices since the deregulation is that prices are now 

determined according to the fundamentals of supply and demand. In short, while electricity is 
                                                           
9
 The data were obtained from the website of the Australian Energy Market Operator (AEMO) and from the 

Australian Bureau of Meteorology on a daily basis. 



 

 

continuously generated with some infrastructural limitations (e.g., constraints of storage and 

transmission lines) and influenced by exogenous factors (e.g., weather conditions and seasonality), 

the sale prices to consumers are fixed. Therefore, it is clear that the extreme behavior of electricity 

price spikes is in part determined by these other factors.  

According to various authors, these exogenous factors are important for explaining the 

intensity of spikes in spot markets (Christensen et al., 2012; Golombek et al., 2012; Clements et al., 

2013). In this investigation, we incorporate three covariates. First, the exceedance sizes (or marks) 

of these log-prices returns (�� − �), which, according to the results obtained in other financial 

markets (Chavez-Demoulin & McGill, 2012; Herrera & Schipp, 2013), have a direct impact on the 

intensity or frequency of these extreme events. Second, the logarithms of electricity load (L), which 

represents the contemporaneous demand. Third, the daily maximum temperature observed (T), as 

a proxy for weather conditions. The last two covariates are constructed by detrending them using a 

simple linear trend model, while preserving obvious seasonal fluctuations and abnormal load and 

temperature events.10 

In contrast to Christensen et al. (2012), we include them in the conditional mean function of 

the ACD-POT model and in the kernel function of the Hawkes-POT model. In this way, the 

covariates will influence both models in terms of an infinite lag structure by means of the following 

function:  

d� = ���� + �,�� + ����� − ��, 
where the parameters ��, �, and �� are unrestricted.11  

4.3 Seasonality  

As pointed out by different authors, the first step in defining a model for electricity spot price 

dynamics consists of describing the seasonal component appropriately. This can be done in a 

number of ways, including principally sinusoidal functions (Lucia & Schwartz, 2002; Weron et al., 

                                                           
10 For the period analyzed, we notice a clear correlation between daily maximum and minimum temperatures, 
causing non-invertibility of the Hessian matrix of the models. For this reason, we only consider the covariate 
with the highest level of explanatory power; in this case, the daily maximum temperature. 
11 Our results suggest that this autoregressive specification captures the effect of these covariates in a better 
way, according to goodness-of-fit tests. 



 

 

2004; Pilipovic, 2007) and dummy variables (Lucia & Schwartz, 2002; Higgs, 2009). In this paper, 

the authors follow a combination of both, similar to the proposal by De Jong (2006). We assume 

that the log-spot price �� is composed of two independent parts: a seasonal component �� and a 

stochastic component	��, i.e., �� = �� + ��. For the seasonal component we propose the following 

model: 

�� =f�h��,h + ���
hj�

sin W�� 2��365.25X + ��`Z����&�  , 
where ��,h are dummies for individual week days. We also include a sinusoidal function to capture 

the seasonality over the year, and an exponentially weighted moving average (EWMA): 

Z����  = �1 − ¡���&� + ¡Z����&�   

to control the trend showed by log-prices. After some experimentation, and to avoid overfitting, we 

choose a decay factor ¡ = 0.70 for the log-spot prices analyzed. The deseasonalized log-spot 

prices �� are obtained by subtracting the calculated seasonal component to the log-spot prices.12 

Finally, the deseasonalized log-spot price returns are obtained as	�� = �� − ��&�. Since we 

concentrate on the left tail for risk management, the negative log-deseasonalized log-spot price 

returns 	��	are used for the analysis. 

4.4 Estimating the SEMPP models 

4.4.1 Stylized facts and threshold selection 

One requirement for applying EVT to the log-spot price returns is the choice of a sufficiently 

high threshold, u > 0, without compromising the variance of the sample. We selected the Hill plot, a 

common estimator for finding an optimal threshold to help choose this threshold (e.g., Embrechts et 

al., 1997). These Hill estimates indicate that, for this application, a good compromise for the 

threshold � is 10% of the sample. As reported by Christensen et al. (2012), this threshold 

corresponds in prices to AUD$100/MWh, which seems to be the most informative threshold with 

which to define spikes according to market participants. 

                                                           
12 The results of the estimation of these seasonal components are available upon request. 



 

 

Figure 1 displays some of the stylized facts which motivate this study. On the left, we 

observe the marks or excesses over the threshold � previously defined for each return and the 

apparent clustering behavior in each return. This clustering hypothesis is validated by the 

autocorrelation exhibited by the inter-exceedance times. According to point process theory, if the 

extreme observations were independent events over time, the inter-exceedance times would be 

exponentially distributed, which is a fundamental assumption of a Poisson process model. However, 

the evidence in the QQ-plots displayed on the right of Figure 1 completely contradicts this idea. 

Indeed, the inter-exceedance times display a significant dependence among each other, which 

could be important in explaining the clustering behavior at extreme levels. These findings coincide 

with the results obtained in Christensen et al. (2012), where the intensity of the spikes over time 

exhibit a significant dependence on the history of the process. 

< Insert Figure 1 about here> 

4.4.2 Duration-based or intensity-based driving process? 

Results of the estimation of the SEMPP models for all return series analyzed are presented 

in Table 2. Concerning the overall fit, the results lead markedly toward favoring the ACD–POT 

model approach, though between the two different conditional mean function specifications, we did 

not find significant differences.13 Importantly, all the coefficients related to these conditional mean 

functions and probability distribution functions seem to be highly significant. However, the results 

suggest a marked preference for the standardized residuals to follow a Burr distribution over a 

generalized gamma distribution function with a non-monotone behavior (p > 1).  

In relation to results obtained for the Hawkes-POT model, we observe that low values for 

standard deviations of parameter estimates also confirm the good fit of these. The rate of new 

exogenous extreme events in electricity markets is determined by the background intensity	e, while 

the kernel at the right of (10) accounts for the mutual excitations of past extreme events.14 Observe 

                                                           
13 In terms of fit, all models ACD(p,q)-POT prefer the orders of the persistence p= 1 and q =1, over more 
complex specifications. These results coincide with those obtained by Christensen et al. (2012) for an ACH 
model. 
14 A recent attempt to establish a link between the ACD and Hawkes models is the work of Filimov et. al (2013) 
by means of effective measure of endogeneity. 



 

 

that for the markets analyzed, the range of exogenous extreme events corresponds to 50% to 70% 

of the sample, which means that on average, 40% of the extreme events are due to endogenous 

triggering effects rather than to genuine new price spikes.15  

Results for the risk measures induced by ACD-POT and Hawkes-POT models share many 

similarities. For instance, in Figure 2, VaR estimations at confidence level 0.99 fluctuate in a similar 

range and show qualitatively similar clustering of events, even when the covariates affect these 

markets in different ways. 

< Insert Figure 2 about here> 

4.4.3 The impact of explanatory covariates  

Table 2 also reveals other important results related to the inclusion of explanatory 

covariates. For New South Wales, the covariates added little to the conditional mean function 

behavior for the ACD-POT models, making the majority of coefficients not statistically significant. 

The same occurs when we include these covariates directly in the conditional intensity function of 

the Hawkes-POT model. 

In the case of Queensland, the inclusion of explanatory variables seems to play an 

important role, with all of them being highly significant in the ACD-POT and Hawkes-POT 

approaches. We observe that the size of exceedance has a negative impact on the conditional 

mean function of the ACD-POT model, while the same occurs for the Hawkes-POT model but with 

the factor load.  

For South Australia, the load factor and temperature display a positive impact on the 

intensity of the ground process for the Hawkes-POT model, while for the ACD-POT, there is no 

evidence of covariate influences on the conditional mean function.  

Finally, for Victoria, only the load factor drives the intensity of the ground process by means 

of the inter-exceedance times in the ACD-POT models, while all explanatory variables are 

significant for the Hawkes-POT model. 

                                                           
15 Indeed, for Hawkes-POT models the background intensity belongs	e ∈ 	 £0.05,0.07�, while we consider the 
threshold of extreme events to be 10% of the sample. 



 

 

These findings corroborate that the ground point process’ intensity for returns in these 

markets is related to its past realizations and in some cases to other explanatory covariates in 

concordance with results of previous studies (Christensen, 2012; Clements et al., 2013; Mount et 

al., 2006). 

4.4.4 Are the intensity and size of these events related? 

Basically, the hypothesis behind the scale specification in (8) and (11) follows the logic that 

an augment in the frequency of extreme events entails an increase in the size of these 

exceedances during periods of turmoil. In accordance with it, the results of the GPD estimates 

justify the influence of the conditional intensity of the ground process over the scale behavior 

(U� > 0) for both SEMPP approaches. This finding has also been addressed in other financial 

markets (Herrera & Schipp, 2013; Chavez-Demoulin & McGill, 2012). Furthermore, for both models, 

we test the fit of the marginal distribution of marks. Smith (1990) proposes the following test: 

�� = 1! ln W1 + ! �� − �U��|ℋ2�X. 
If the assumed model is correct, then ����¤� are independent exponentially distributed random 

variables with mean one. We test if ����¤� are unit exponential variables and approximately 

independent by means of a Box-Ljung test (¥�¦) and a Kolmogorov-Smirnov test (§�¦). According 

to the p-values for these two tests, displayed in Table 3, the dynamic specification for the scale 

parameter for both approaches seems to be appropriate for every return analyzed. 

< Insert Table 3 about here > 

Finally, Figure 2 shows in-sample estimates for VaR at a confidence level of � = 0.99 for all 

models in every log-return series. From top to bottom, the figures correspond to NSW, QLD, SA and 

VIC markets, while from left to right we observe the proposed models, namely the linear ACD-POT 

and the LogACD-POT, both with generalized gamma and burr distribution functions of probability 

for the standardized residuals, and finally the Hawkes-POT model. The " × " symbol above the 

estimates for the VaR in Figure 2 indicates violations at this confidence level. Observe how we can 

better capture the magnitude of extreme events VaR for electricity markets when we take into 



 

 

account the inherent autoregressive or auto-excited behavior of inter-exceedance times and 

explanatory covariates in the intensity of the spiking process, providing practitioners an efficient way 

to calculate risk contributions in practice.  

4.5 A simple benchmark model 

We propose an AR(7)-APARCH(1,1)-EVT model that assumes innovations ª2 = [2/�2 with 

skewed t-Student conditional distribution which has been demonstrated to be the best alternative 

(Chan & Gray, 2006)16. Under this framework, the AR(7) model captures the weekly seasonality for 

the mean 

/2 = # +f�h/2&h + [2,�
hj�

 

where # and �h are parameters estimated, [2 are the residuals of the AR model and /2 are log-price 

returns. As a second step, we propose an APARCH(1,1) model that captures the leverage effects 

observed in the literature (Knittel & Roberts, 2005; Chan & Gray, 2006): 

�2, = « + ���|[2&�| − q�[2&��¬ + U��2&�¬ , 
where  > 0, −1 < q� < 1. 

The estimation results are displayed in Table 4. Similar to Higgs and Worthington (2005), 

we find some variation between electricity markets in Australia in relation to the estimated power 

term of the APARCH model. With the exception of Victoria, all the other markets seem to be 

significantly different from a Taylor-Schwer model (TS-GARCH implies	 = 1) or a simple GARCH 

model ( = 2). In the case of Victoria, a GARCH model should be enough. Furthermore, we 

observe that for all returns analyzed, there exists evidence of a positive leverage effect (�� > 0), 

which means that past negative returns shock have a deeper impact on current conditional volatility 

than past positive shocks. Actually, this AR-APARCH-EVT model was the best model fitted to each 

return analyzed and it is in line with the framework proposed in other energy markets (Higgs and 

Worthington, 2005; Feng et al., 2012; Marimoutou et al., 2009). In relation to the shape and scale 

parameter estimates, by fitting a GPD to the standardized residuals, all of the estimates are 

                                                           
16

 The determination of the ARMA order and the APARCH order has been realized using a traditional model 
selection criterion, the Akaike Information Criterion (AIC). 



 

 

statistically significant. For the estimation of VaR in the backtesting, this model is re-estimated on a 

daily basis. 

< Insert Table 4 about here > 

4.6 Value at Risk Forecasting  

So far, the analysis has been focused on the results in-sample. However, a notably 

important measure of performance relies on testing the proposed model on certain out-of-sample 

data; this importance is due to the trading agents’ natural use of risk measures. We selected the 

most recent three years of daily observations; that is, from January 1, 2010 to December 31, 2012. 

The backtesting is implemented for a one-day-ahead VaR forecast, which means that the 

parameters of the models are estimated using the in-sample period of observations (January 1, 

2010 to December 31, 2012) more than most actual daily observations of log-returns. This also 

includes the observed explanatory covariates for the forecasting.17  

< Insert Table 5 about here> 

Before the estimation of VaR for the backtesting sample, we provide a short description of a 

set of statistic tests which are used to determine the accuracy of VaR forecasting. 

4.6.1 Forecast evaluation framework 

To determine the accuracy of VaR estimates, we consider a set of statistic tests. A detailed 

explanation of each test can be found in Kuester et. al (2006). We define the failures as the number 

of days whose return exceed the estimated VaR: 

®2��� = t1 �o	�2 > �g��20 ¯0�¯ � 
while 7��2��� = ®2��� − � is the de-meanded process on � associated to ®2���.  

The first three tests were proposed by Christoferssen (1998): a test of unconditional 

coverage (��S°) to test whether the fraction of violations obtained for the VaR is indeed	the 

expected fraction; a test of independence (����±) to test independence of the failures; and a 

                                                           
17 Alternatively, we could have used a forecasting approach for the load and the temperature as was done by 
Weron (2006) and Christensen et al. (2012). However, we wish to keep the simple structure of the actual 
model. 



 

 

conditional coverage (��°°) test (which is a combination of the last two tests) to determine 

independence and correct coverage. Moreover, we implement two more dynamic tests based on 

linear regression models—the Dynamic Quantile tests proposed by Engle & Manganelli (2004). The 

first is the dynamic quantile 7��2��� ��²³�2) test, where the regressors are the lagged indicator 

function of failures (the hits), while the second dynamic test, the dynamic quantile VaR (�²´µ¶) test 

uses, in addition, the contemporaneous VaR estimates. In the empirical application, we display only 

the p-values obtained. For every one of these statistical analyses, a p-value > 0.05 will be 

considered as an approved test. 

4.6.2 Results for the VaR forecast 

Table 5 exhibits the p-values for these accuracy tests for the VaR at three different 

confidence levels (0.95, 0.99, 0.999). In general, the proposed models perform well under new 

observations, with most of the alternative models satisfying all tests for adequate VaR estimation in 

every case and with no significant difference in performance among them. 

For NSW log-returns the best model approving all tests is an ACD-POT model with Burr 

distribution for the standardized inter-exceedance times, followed by the Hawkes-POT approach. 

Observe that, contrary to the Hawkes-POT model, most of the ACD-POT models provide a lower 

number of VaR failures than expected for the confidence level 0.95. These results can be explained 

by a number of extreme observations that have been underestimated in the backtesting sample. 

However, for ACD-POT models, the failures of the VaR at this confidence level do not display any 

temporal pattern, in contrast to the results showed by the Hawkes-POT model.  

For the QLD log-returns, two ACD-POT models (linear ACD-POT and Log-ACD-POT) and 

the Hawkes-POT model exhibit a perfect score in the accuracy test. The bad results obtained for 

the other two models is due mainly to the misspecification of the distribution assumption for the 

standardized inter-exceedance times, which did not capture the clustering behavior of these 

extreme events, displaying evidence of non-independence for the VaR failures at confidence level 

0.95. 



 

 

Regarding the SA market, the results are very promising for all SEMPP models during the 

backtesting. All models tend to estimate the frequency of extreme returns correctly, producing 

independent VaR failures at all confidence levels. 

Finally, the results in the backtesting for the VIC market exhibit the poorest performance, 

being that the linear ACD-POT is the best option besides the distributional assumption for the 

standardized inter-exceedance times. It passes 13 out of the 15 tests for both models, whereas the 

third best specification passes only 8 of the 15, with the major problem being the consistent 

behavior of the VaR failures to gather into clusters.  

Table 5 also presents the results for the AR-APARCH-EVT benchmark model. For most of 

the markets, the results show that the benchmark approach is inadequate for estimating VaR in 

these markets, supported by the unconditional coverage tests (��S°) for low confidence levels. This 

result demonstrates the difficulty of investigating the stylized facts for electricity spot price returns 

using the classical time series framework, where we assume the same behavior in the observations 

during periods of low demand, as well as of unexpectedly high demand.  

In light of these results, the ACD-POT approach provides a suitable alternative for short-

term forecast of risk measures in electricity spot markets characterizing the behavior of extreme 

events. In particular, empirical results of ACD-POT models to the one-day-ahead forecast show a 

superior performance in comparison to volatility models whose behavior aims to capture the 

trajectory of price spikes more than the clustering behavior of extremes.  

5. Conclusions 

The aim of this investigation was to determine if the time between past extreme events in 

electricity spot price returns is a determinant of future price spike behaviors. To this end, we 

propose the SEMPP approach, which exhibits a high flexibility and focuses on capturing the 

relations between inter-exceedance times of extreme events rather than the whole time series, 

together with a set of covariates. 

In an empirical application to the Australian electricity market, the SEMPP models were 

evaluated in terms of the overall test of all parameters, goodness-of-fit statistics and accuracy of 

prediction for risk measures. In particular, we compare the ACD-POT and Hawkes-POT approach 



 

 

for the estimation and forecasting of the VaR. Finally, we compare the SEMPP models with a 

common alternative; a combination of autoregressive and stochastic volatility models with 

refinements of EVT, an AR-APARCH-EVT model. For most of the returns analyzed, the SEMPP 

approach gives better results. 

One of the more significant findings to emerge from this study is that there exists evidence 

of dependence between inter-exceedance times of extreme returns in these markets, which is 

directly related with the future behavior of the stochastic intensity process for price spikes. 

Furthermore, the inclusions of covariates, such as the influence of load or temperature factors, also 

have a positive impact on the intensity of the ground process for these extreme events. An 

interesting future research possibility is to directly model the price spikes using a regime-switching 

approach for the conditional intensity of the ground process in order to respond to these shifts more 

rapidly. Another possible extension is to analyze these markets as a group by means of a 

multivariate point process model, taking into account market specific information (market design, 

market participants, demand and weather-related covariates) that might increase the model’s 

explanatory power.  
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