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Abstract

Crude oil is a dynamically traded commodity that affects maognomies. We propose a
collection of marked self-exciting point processes witpeledent arrival rates for extreme events
in oil markets and related risk measures. The models tredirtte among extreme events in oil
markets as a stochastic process. The main advantage opthrisagh is its capability to capture
the short, medium and long-term behavior of extremes withmolving an arbitrary stochastic
volatility model or a prefiltration of the data, as is commorektreme value theory applications.
We make use of the proposed model in order to obtain an imgresgémate for the Value at Risk
in oil markets. Empirical findings suggest that the relidgpénd stability of Value at Risk
estimates improve as a result of finer modeling approacts i§tsupported by an empirical
application in the representative West Taxes Interme@&fE) and Brent crude oil markets.
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1. Introduction

In recent years oil industry has been continuously expanaid evolving with no sign of this
changing in the near future. Price fluctuations in the crutlenarkets worldwide have attracted
significant attentions from both, managers and academiestalthe profound impact created on
businesses and governments, and due to the high complexityv@e price swings in times of
shortage or oversupply. In addition, oil futures are becwnan important investment instrument.
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For example, oil futures became an important hedge dure&tibprime mortgage crisis in 2007
to 2008. Oil is considered to be a hedge at such times as itageast the trend of the stock
market.

Good risk management begins with good risk framework; teatinderstanding the likeli-
hood and magnitude of extreme events. Unfortunately, dileet@omplicated unusual nature of
oil price fluctuations, current energy risk managementtgradas remarkable difficulty assess-
ing this class of events. By extreme events, we mean everttec¢har infrequently, even when
looking broadly across the time. This limitation is unfaréile because infrequent, but potentially
significant, events are precisely the kind of events thatl hlee most attention and, with appropi-
ate attention, they can also produce the greatest benefigeiPmeasurement and management of
risks due to unexpected oil price movements has been cifugnalboth, operational and strategic
perspectives. An example of extreme events are the changeade oil prices which affect oll
market traders, impact global economic activity, govermnnpmlicy and vice versa. For instance,
the Persian Gulf War in 1991 is recognized as one of the masuseevents that strongly affected
crude oil markets in the 1990s.

Value at Risk (VaR) is the most popular and attractive methoch@fsuring risk for simple
concepts, and provides a single number that summarizestthlaisk for financial assets. From
the point of view of Extreme Value Theory (EVT), a few studies/e considered VaR for crude
oil markets (Krehbiel and Adkins, 2005; Marimoutou et aD0PQ). Krehbiel and Adkins (2005)
estimate tail parameters and construct risk statisticsificonditional distributions of daily loga-
rithmic price changes of the NYMEX energy complex. They gpk conditional extreme value
method to estimate VaR and related risk statistics from alle of conditional distributions for
these commodities. The results of this work indicate thatttie backtesting, the conditional ex-
treme value approach is significantly more accurate for orgagthe risk exposure of most of the
series examined. Marimoutou et al. (2009) utilizes stash&8MT to model VaR for long and short
trading positions in the oil market by applying both uncaiotial and conditional EVT models
to forecast VaR. They compare these models to the performaragher well-known modeling
techniques, such as GARCH, Historical Simulation and Fittétfistorical Simulation. The results
of this work show that both conditional EVT and Filtered Hdistal Simulation procedures offer
the greatest improvement over other conventional metheatlshermore, their results confirm the
importance of the filtering process for the success of stahaaproaches.

The peculiar properties of the extreme events related toithgice fluctuations, such as the
irregular spacing in time, the discreteness of price chentiee cluster of extremes as well as
the presence of strong correlation among the time duratong extreme events, make new



econometric approaches, that take these issues into eoasah necessary.

The contribution of this paper is two-fold. First, it expderdynamic EVT models that can cap-
ture the short-term dynamic of extreme events in crude oiketa without the use of an arbitrary
stochastic volatility model, which certainly impacts theasures of risk, such as VaR. Taking the
dynamical aspects within the cluster of extremes into actmuabsolutely necessary if one seeks
to exploit the full amount of information in oil prices. Theethhod to be introduced takes advan-
tage of the structure of the model, thus allowing for moreciffit use of the data. In this paper we
will consider two alternative generalizations for the slaal point process theory in EVT to the
marked self-exciting point process (MSEPP) framework. Mpprocess is defined as MSEPP,
when the past evolution can impact the probability of fuiewents.

The first class of models is formulated in relation to the tiofieccurrence of the extreme
events (Chavez-Demoulin et al., 2005, Herrera and Schipp9,28nd Chavez-Demoulin and
McGill, 2012). We call this class of models time event peaksrahreshold (TE-POT) and it
would be able to generate power-law and exponential decayele@ extreme events and short-
term cluster burst. The second class of models is the autsgge conditional duration peaks over
threshold (ACD-POT). It is focused on the intervals betwedreene events, the inter-exceedance
times (Herrera and Schipp 2012), and it is able to produce slecay of autocorrelation and
medium and long-term cluster burst.

The second contribution of this paper is the empirical aapion of the proposed models to
two well known crude oil markets; the West Texas Intermed{8¥TI), which trades on the New
York Mercantile Exchange (NYMEX), and the Brent oil markehieh is the leading global price
benchmark for Atlantic basin crude oils and is used to pruathirds of the world’s internation-
ally traded crude oil supplies. Crude oil is not only the wrlshost actively traded commaodity,
but also the largest volume of futures trading of any physioenmodity. Owing to its excellent
liquidity and price transparency, crude oil contracts s&wa key international pricing benchmark.
This is why estimating the risk in WTI and Brent crude oil is sgortant.

Our results show that the MSEPP models are stable and esliadl only in-sample results but
also in the backtesting, implying that these approachesaafeling extreme values can be used
for further applications in energy markets. Moreover, majgrovements in VaR forecasting are
achieved in all aspects when accounting for the extremet eyeramics by means of the proposed
models. In particular, VaR violation ratios are statidticaqual to the theoretical values in all
cases, and VaR violations are independent when using ét@&aE-POT model or the ACD-POT
model, the latter being preferred overall.

The remainder of the paper is organized as follows. Sectioffe2s a brief review of the



classical EVT approach. Section 3 introduces the new geMS&PP specification for extreme
events. Furthermore, in this section we describe the tweegelting approaches to be used in the
empirical study. Section 4 contains the empirical appiicet. Section 5 concludes.

2. Peaks Over Threshold (POT) method

Suppose that we can observe the returns through the timerofla oil market, as for example
the Brent market. We denote these observation¥by .,Y, and we assume that the return se-
ries are independent and identically distributed (iid)d@m variables with common distribution
functionF.

Now, imagine that we observe this random distribution ofestations{ (ti,y;) } whose values
exceeds a high threshaldn a defined state spacié x % = [0,1) x [u, ), where the time has been
rescaled for convenience to the inter{@l1). By looking at the dynamic of such observations, we
concentrate only on the most extreme oil market returns.

On one hand, the time eventsare the time of the i-th peak exceedance, i.e., the time in tha
a return exceeds a defined high threshaldVe refer to this process as the ground process. On
the other handy; — u is the exceedance sizes or marks for a sufficiently high timldss and we
will call this process the process of the marks. A point pss®§A) can be viewed as the counter
of these random observations in a 86t .7 x . Pickands Ill, 1971 demonstrated that this two
dimensional point process will look like as a non-homogerseBoisson process with intensity
defined for all subsets of the forf= [t;,t) x [y, %) wheret; andt, are times of occurrence of
extreme events. This representation is as follows

1 y—p\ Vet
)\(t,y):(—T (1—|—ET)+ , (2.2)
wherey,; = max(y,0). In this point process and o determine the location and scale of the
extremes, whil& characterize the rate of decay of the tail of the distributid extreme events.
It follows from these characterizations that a completersany of extremal behavior of this time
series is contained in the three parameters,é .

If we accept that the point process of exceedances is aniorendional Poisson, then the
process has independent increments, i.e., the number wifs¢ythat occur in disjoint time inter-
vals are mutually independent, which implies lack of memarthe evolution of the process. In
addition, the number of extreme evefté any interval of length(t, —t;) is Poisson distributed



with mean
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Notice that we have divided the intensity meas{rato two independent Poisson process with
corresponding intensity measuhg and/\,. The first,A1, models the random time at which the
extreme events occur, while the secoftd, models the exceedance sizes.

Another important result of extreme value theory is thedwlhg limiting conditional proba-
bility, which characterizes the tail of the excess disthino function over the thresholdl

P(Y—USY|Y>U):M:(1 &y

N2([u, )

which is just the survival function of the generalized Pamdistribution (GPD), i.e.G=1-0,

with scaling parametg8 = o+ & (u— ) for 0 <y < yr. Hereyg is the right endpoint with values
yr = if £ > 0andyr = —f/& if £ <0. We shall call this model the Peaks Over Thresholds or
POT model.

Observe that this methodology does not take into accourtirtteewhen these extreme events
occur because this assumes that the observations are imdgpeand therefore, that past obser-
vations do not have influence on future observations. Inadheviing, we will explain our interest
in investigating extreme events in oil markets as a markeut poocess of exceedances. Figure
2.1 shows in the top panel the negative daily percentagedtgns of Brent shares between June
1, 1987 and December 31, 2010, and the times and sizes of glativeedaily percentage log re-
turns exceeding a threshald= 3.15 (the 0.93 quantile). Notice that this contradicts thesilzal
model assumption of no cluster at the extremes. Indeed,rundemogeneous Poisson process
the inter-exceedance times should be independent expahertdom variables. The lower left
picture shows an exponential probability plot for the irtgent times, these are clearly far from
exponential, giving evidence against a Poisson processaaeelances. Furthermore, the auto-
correlogram plot suggests clustering of the inter-exceeeldimes. This hypothesis is moreover
reaffirmed by the Ljung-Box statistic using 10 lags. The nyjpdthesis of white noise is easily
rejected with the Ljung-Box statistic of 143.43 well above thitical value of 18.307 at the 5%
level, rejecting the Null hypothesis.

VI
m) = Gg p(y), (2.2)

Summarizing, the characteristics of oil markets, such asteted extremes and serial depen-
dence, typically violate the assumptions of independendbe model. As a consequence, the
direct application of the classical POT framework seemstadnviable.
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Figure 2.1: Upper left panel shows Brent daily percentageréurns from 02.01.1990 to 18.01.2008. Upper right
panel displays the 732 largest losses (the exceedancesgr left panel shows a QQ-plot of inter-exceedance times
against an exponential reference distribution. Finalg bower right panel displays the autocorrelogram for the
inter-exceedance times for the exceedances.

3. Extending the POT method to marked self-exciting point preaesses

In this paper we define a marked self-exciting point procé4SEPP)N, as a set of ob-
servations, occurrence times and mafKks,yi)} on the space7 x %/, whose history 74 =
({t1,y1},-..,{tt—1,Y%t—1}) consists only of the occurrence times and mdtksy1 },..., {ti_1,¥t—1}
up to timet but not including. In our case the time evertisare the times in that the returns exceed
a defined high threshold, while y; — u is the size of the exceedances or marks for a sufficiently
high thresholdi. Observe that under this point of view, the marks arise asahgonent that car-
ries the information about the eventis time and that may themselves have a stochastic structure
and stochastic dependency relations, but they do not gunelsto a second dimension (see Daley
and Vere-Jones, 2003 for a more formal introduction).

As part of this point process, we define a ground point probigsehich models the stochastic
process of the inter-exceedance times with conditiona@nisity Aq (t | %), and a generalized
Pareto density functiorf (y | 74,t) for the marks. This implies that the conditional expected
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intensity for the marked point procelisis given by
ALY| ) = Ag(t | R) T (Y] A1), (3.1)

Hereafter, we move away from Poisson modéds the occurrence times of exceedance of high
thresholds and consider self-exciting models for the damhl intensity of the ground process.
We focus on point processes which evolve with after-effaat$ which are conditionally orderly.
In this sense, marked self-exciting point process conssta suitable framework because it al-
lows the intensity of the ground procelg(t | 7%) to be modeled by a continuous function and a
non-negative (stationary) random process and also allassgvolution to impact the probability
structure of future events. Furthermore, it is particylgdwerful for the modeling of multivari-
ate processes. For instance, specifying in terms of anegressive process yields a dynamic
intensity model which is particularly useful for capturitige clustering of extreme events in risk
management.

The main idea in this class of models in extreme value thesoiy ieplace the scale parameters
B in (2.2) by dynamical alternatives based on time varyingfioms, e.g.3 (t,y | 74), so that the
Poisson intensity parameters are now functions of the tiarel the past history#?.

As result of this approach, we now have a time-dependentsittemeasure of the form

Ag(t | ) y—u Vet
B(t,yu@(”f/z(t,ywa) |

Notice that the distribution of the marks are assumed incléget of the behavior of inter-exceedance
times. Indeed, the implied distribution of the marks whemxineme event takes place is given by

Ay [ 74) = Ag(t | AR) T (y | A1) =
J’_

No([u+y,00) | FK y—u Ve
e 10 = (T gy ), Cesm)
Note that the marginal distribution of the marks will now mnditionally independent of the as-
sociated ground process. Therefore, the product of markitikes simply has to be multiplied
with the likelihood of the ground process. Ldtbe a MPP orjtp, T) C 2" x & for some finite
positiveT with realizationgt1,y1),. .., (tnr), Yn(m)) Of N, andp; be a family of conditional prob-
ability density functions for arrival timg, the log-likelihoodL of such a realization in terms of

10Observe that an alternative description of the Poissongs®(2.1) is rewritten this as a special case of the MPP

. N — g\ -VE-1
(3.0, withAg(t | ) = — (1+E“5#) ¢ andf (x| /%) = 3 (1+5%)+  With B = 0+ &(u—p).
2We could also parametrize the shape paramgtddowever, the behavior of the estimation is severely adféct

For this reason it is reasonable to consider the shape pteacomstant.
7



the conditional densities or intensities is given by

N(T) N(T)

L = logpi (ti | &) + ) logfi(yi | 1) (3.2)
i; 1\ i; | |
N(T)

T N(T)
= 3 logAg(t | ) - | ols| A)dse > logi (] 1)
i= i=

to
3.1. Dynamic risk measures

Risk management embodies the process and the tools usedfoatvg, measuring and man-
aging the various risks within a Company’s portfolio of finesh\ccommodity and other types of
assets. In the case of oil markets, VaR can be used for irestarguantify the maximum oil price
changes associated with a likelihood level, to avoid bigéssdue to price fluctuations or changing
energy consumption patterns and to meet regulatory regaeinés that limit exposure to risk. For
the MSEPP models the V4Ris defined as the-th quantile of a distribution at the tinté >t
which is solution taP (yi. >y | %) = 1— a. Observe that under our framework this measure can
be derived from the time-dependent intensity measure sl

)
By >y| ) ~ /t ALy )dl
= Mt | ) x Ag(ly,0)).

Thus, solving this equation for some valueyot u the VaR is defined by

. Bty|A&) 1-a \~°
VaRy = u+ ; ((Ag(t”%)) 1>. (3.3)

The last equation implies that the VaR is only defined for oodais ifAg(t* | 74) > 1—a.

Novels MSEPP and applications to extreme value theory haemn Ipresented in Chavez-
Demoulin et al. (2005), Herrera and Schipp (2009), Chavend@#in and McGill (2012) and
Herrera and Schipp (2012). In this paper we will consider alternative generalizations for the
classical point process methodology in extreme value theldne first class of models is formu-
lated in relation to the time of occurrence of the extrementvéthe time event POT models”,
while the second class of models is focused on the intenetisden extreme events, the inter-
exceedance times, “the autoregressive conditional dur&OT models”.



3.2. Time event POT models (TE-POT)

This class of models is obtained by specifying, the intgnsitthe ground procesky(t | %)
and the scale paramet@rt,y| /%) as a (linear) self-exciting process given by

Ag(t| ) = K+ % g(t—ti,y)

i<t
Btyl#4) = Bo+n H olt—t,y)
i<t
wherek and 3y represent the background rate of events, which in most@giuins is assumed to
be constant in time, while,n > 0 and the kerned (-) denote the magnitude of self-excitation and
density at which self-excitation is triggered, respedjivdlote that each time a new point arrives
in this process, the conditional intensity (the time vagystale parameter) grows lgy(n) and
then decreases exponentially back towdedg). In other words, a point increases the chance of
attaining other points immediately afterwards, and thhis, is the best model for clustered point
patterns. Many forms fag(-) have been proposed in the literature, though in generaldireekis
chosen so that the risk increases with extreme event malgnénd decreases in time away from
each event. In this paper we use two different kernel funstio

(1+ dy)

OH (t—ti,y) = (1+dy)exp(—y(t—t)) and ge(t—t.y)= o
(1+5%)

wheret —t; denotes the time elapsed since an extreme gvieas occurred at the tinte We refer

to gn (t —tj,y) as the Hawkes kernel amg (t —t;,y) ETAS kernel (Epidemic Type After Shock ).
For more on this class of models applied on risk managemer@kavez-Demoulin et al. (2005) ,
Herrera and Schipp (2009) and Chavez-Demoulin and McGill2200bserve that in the general
formulation of these models, the marks are conditionaltiependent since the ground intensity
does not depend on the past marks.

3.3. The Autoregressive conditional duration POT model (AZDI)

In the second alternative specification, the intensity igethr by an autoregressive process
which is updated at each point of the process. These typgeoifications were initially proposed
by Herrera and Schipp (2012). This leads to a special typeiot process model which does not
originate from the classical point process literature hther from the autoregressive conditional
duration (ACD) literature (see Engle and Russell (1998)). \&#ne a model for the conditional
intensity of the ground point process of exceedances dapgndly on a fixed number of the most
recent inter-exceedance timgs=tj —tj_;. The ACD model is defined as follows

9



X = Y&

Y = ¢i(Xi-1,...,%;0)

whereys; (X-1,...,X1; 8) is the duration conditional on all information up to and imtihg time
ti_1, 6 is a parameter vector argl are iid random variables. Two specifications are considered
in this paper for the conditional expected duration. Thd fgthe most popular autoregressive
conditional duration model (ACD model), introduced by Enghel Russell (1998) and is based on
a linear parameterization of the conditional mean function

p q
Wi =w+ Y apxi-j+ » bjij,
j=1 =1

wherew > 0, a,b > 0. In order to ensure the stationarity and existence of treonaitional
expected duration we ne@leaj + Z?:lbj <1.

The second model is the logarithmic ACD (Log-ACD) model, iduroed by Bauwens and
Giot (2000) in order to prevenp; becoming negative, in which the autoregression bears on the
logarithm of the conditional expected duratfon

p g
P = exp{w+ > ajlogxi—j+ 5 b Iogwi,-}.
=1 =1

To find a general expression for the conditional intensitthefground procesky(x; | 74; 9),
let f; andS: be the density function and the associated survival funatice;, respectively. One
can easily show that the conditional expected intensityhefinter-exceedance times between ex-
treme events, the ground process, can be expressed as @alicailtie effect between the baseline
hazard function and a self-exciting point process shifegilsy the expected duration

X\ 1
Ag(Xi | 7£,0) = Ao | — | —. 3.4
o(x | 74:6) =10 (3 ) o (3.4)
whereAg (t) = f¢ (t) /S (t) is defined as the baseline hazard function.

The second important ingredient in the parameterizatiotn®/ACD models is the distribu-
tional assumption for the innovation process. In this papepropose the generalized gamma
distributiorf. The major advantage of this distribution is that this hasoa-monotonic hazard

3For a meaningful comparison of alternatives in relation EAOT models and for simplicity, we limit the dy-
namic structure of the ACD-POT models to the first lag orddy onthe empirical study.
4During the fist draft of this paper we take different ACD-misdimto account to find the best approach with
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function taking bathtub shaped or inverted U-shaped forma bathtub shaped form the hazard
rate initially decreases, during the middle phase the llazde is essentially constant, and in the
final phase the hazard increases. Inverted U-shaped foemtharcounterparts; the hazard rate
initially increases, then becomes close to constant andatkly decreases. This feature is of par-
ticular importance if we are interested in modeling risk sgas such as the VaR or the expected
shortfall.
Lunde (1999) as well Zhang et al. (2001) propose the use ohargkzed gamma distribution

to characterize the standardized durations because ondh@ambtain a non-monotonic hazard
function and a time-varying conditional mean duration. Aethparameter generalized gamma

density is given by
ky—1 X\ Y
f(X| y,k) — )X(Xy—r(k)exp{— (X) }, X> O

It includes the exponential distributiory & k = 1), the Weibull distribution K = 1), the half-
normal (/= 1/2, k = 1) and the ordinary gamma distributiok-€ 1). Under the restriction that

A =1 we chosey = Lpi% which implies a conditional intensity for the ground prazgs/en
_l’_

1
free(- ()"}

) .0y _ 4
Ag(Xi | 74;0) = I (k, <%>v> )

A\ Y ® : . :
wherel (k, <%) > = X yu"Lexp(—u)duis the upper incomplete gamma integral. Note that

if k=1, then we get the Weibull-ACD model, while fé&r= y = 1 the model reduces to an
Exponential-ACD model.

In addition, for the scale parameié(t,y | 74) we consider a lineal parameterization such that
it depends on the history.

by.

B(t,y| 74) = Bo+ BrYi—1+ B

This feature implies that the marks are conditionally gelieed Pareto distributed, given the
history 74 up to the time of the mark like the TE-POT models. These moaedsime that in a
period of turmoil the temporal intensity of the inter-exdaace times and the magnitude of the
marks linearly influence the scale parameter.

different distributional assumptions, as the Burr, Wdiloulexponential for the standardized duration times. Our
analysis with financial time series have suggested that byelmmparisons based on the likelihood ratio statistic
and AIC, the proposed models give the best fit keeping theutation easy to understand.
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4. Empirical analysis

One of the purposes of this work is to contribute to the liign@on energy prices by studying
the impact of extreme events on the determination of measifnesk for oil price returns. How-
ever, an important aspect for the implementation of the nsqueposed in the above section is the
determination of the threshold beyond which the obsermatase assumed to follow a generalized
Pareto distribution.

The issue of how to choose the threshold is similar to thatt#cding the size of a block in
classical EVT in the sense that both imply a balance betweerdmd variance. A low threshald
leads to failure in the asymptotic approximation of the mi@shel a high threshold provides few
observations and then high variance. Actually, the chofdeeoptimal threshold is still consid-
ered an open problem and different approaches have beemsgao overcome this difficulty. For
instance, Chavez-Demoulin et al. (2005) recommend choeasihgeshold so that about between 5
and 10% of the data are excesses, while Herrera and Schipf)(@fopose a sensitivity analysis
based on a mean squared error, to assess the stability oafeong different thresholds. In
this paper we choose to work with the 7% of the maxima of thepdathe choice of the threshold
is explained in detail in AppendixA.

In relation to the measures of goodness of fit in-sample weeaitihe W-statistics to assess
our success in modeling the temporal behavior of the exemedeof the threshold. This statis-
tic states that if the GPD parameter model is correct, themrdhiduals should approximately be
independent unit exponential variables. In addition, teaghthat there is no further time series
structure the autocorrelation function (ACF) for the residus also included. Similarly, to ap-
praise the quality of the times component of our model, weleyniie residual analysis for point
process. All of these methods are resumed briefly in Appéhdix

4.1. Data set and summary statistics for WTI and Brent crubgrize returns

We use the daily closing price in both US West Intermediatee3gWTI) market and Europe
Brent (Brent) market, which are two of the major marker marketee world. The data source is
the Energy Information Administration, Department of EetJS. The sample period spans from
2 January 1990 to December 31, 2009. A second sample is useddktesting the estimation
of the VaR for the two markets from 4 January 2010 to AugustZZd,1. In this study we only
concentrate on the left tail, so that the daily returns aletated asy = —100In(p;/p;—1), where
pr denotes the stock price at day In the backtest we daily update the new information that
becomes available for the parameter estimates previobsyned. Thus, we dynamically adjust
guantiles, which allows us to as accurately as possibleawgthe estimation of the risk measures.
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Table 1 presents some relevant summary statistics reggitoenunconditional distribution of
the returns. The statistics show that all returns exhilet\siess to the losses as well as excess of
kurtosis, hence we may deduce that each return has a leptottistribution with a fat left tail. In
other words, the returns analyzed here do not have the sthndamal distribution. Verification
is given by the results of Jarque Bera test. Serial corr@ldijomeans of a Ljung-Box test was
not rejected for WTI and Brent returns with a statistical digance at the 1% and 5% level
respectively. In addition, both returns are stationaryesdsy means of ADF unit root test.

Indexes mean sd min max  skewness Kkurtosis Xx)Q( Jarque-Bera  ADW
WTI 0.024 2.584 -40.639 18.867 -0.921 19.915 19.753* 61897.960* -16.185*
Brent 0.025 2.436 -36.121 18.129 -0.749 18.120 11.647** 49357.420* -15.827

Table 1: Summary statistics for the stock market returndyaad. Asymptotic p-value are shown in the brackets.
* *x *xx denote statistical significance at the 1, 5 and 10%veél respectively. The Ljung-Box test statistic (Q) for
serial correlation is calculated up to the 5-th order.

4.2. Model estimation and results

In order to adequately summarize the large quantity of dogiresults obtained, we use the
following classification scheme for the MSEPP models:

e TE-POTh: time event peaks over threshold model with Hawlesse.
e TE-PQOTe: time event peaks over threshold model with ETA&édder

e gACD-POT: ACD model for the expected conditional durationhwgeneralized gamma
distribution for the standardized residuals.

e gLOgACD-POT: Log-ACD model for the expected conditional dima with generalized
gamma distribution for the standardized residuals.

We have four models in total. Observe that we could obtaierosaibmodels by restricting, for
example, the scale parameter to be constant through the time

Empirical results

The maximum log-likelihood estimates of the MSEPP modetgpsed in section 3 for the
two markets are displayed in Table 2. The results lead to edykavor the ACD-POT model ap-
proach. For the WTI market a gACD-POT model was estimated wi@hat 3662.91, while for the
Brent market a gLog-ACD model was estimated with AIC of 3589 Mh7addition, in both cases
the time varying scale parameter leads to a better fit. Indeedesults suggest that these models
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WTI Parameters of the conditional intensityt,y | 7%) of the MSEPP Loglik AIC
Conditional intensity of the ground procekg(t | /%) Pareto generalized densityy | 74,t)
w a by 9 y k ® n P ¢ Bo B B
TE-POTe 0.215 2.449 0.022 0.050 0.612 0.161 0.286 0.616 -1842.643 3701.286
(0.160) (0.942) (0.007) (0.019) (0.259) (0.105)0.067) (0.136)
TE-POTh 0.345 0.014 0.035 0.014 0.196 0.267 0.729 -1829.61 3673.214
(0.167) (0.003) (0.006) (0.003) (0.066) (0.066) (0.124)
gACD 1.154 0.254  0.683 0.202 17.859 0.275 0.321 0.062 10.443 -1822.45  3662.91
(0.458) (0.058) (0.061) (0.160) (28.011) (0.144) (0.067) (0.052)  (2.121)
gLog-ACD | 0.301 0.181  0.747 0.247 11.961 0.277 0.260 0.059 11.406 -1823.35 3664.69
(0.0952) (0.033) (0.052) (0.116) (11.108) (0.0670) (0.159) (0.051) (2.328
Brent Parameters of the conditional intensityt,y | 7%) of the MSEPP Loglik AIC
Conditional intensity of the ground proceksit | /%) Pareto generalized densityy | 74,t)
w a by o y k ? n P ¢ Bo B B
TE-POTe 1.892 4.187 0.040 0.008 0.132 0.26f7 0.227 0.662 0.196 -1800.705 3617.41
(1.132) (1.597) (0.007) (0.004) (0.081) (0.168)(0.069) (0.122) (0.662)
TE-POTh 0.381 0.041 0.037 0.012 0.172 0.220 0.771 -1795.01  3604.02
(0.151) 0.008  0.005 (0.009) (0.098) 0.074  0.113
gACD 0.9694 0.1689 0.7743 0.1513 31.9091 0.192 0.456 0.2007 6.257| -1785.96  3589.92
(0.4860) (0.045) (0.061) (0.0727) (30.506) (0.066) (0.143) (0.0694) (1.816
gLog-ACD | 0.310 0.150 0.767 0.1843 21.623 0.186 0.416 0.1911 6.976| -1785.74  3589.47
(0.114) (0.034) (0.061) (0.0972) (22.624) (0.066) (0.152) (0.0689) (2.020
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Table 2: Results of the estimation of all MSEPP models fohd and Brent market log-returns. Standard deviations arergin parentheses. Loglike
are the results of the maximization of the log-likelihootireation and AIC is the Akaike Information Criterion.



react more quickly to increasing and decreasing clusteuiacy of extremes, which means that
expected duration conditional of the inter-exceedancesdgihas an effect on the probability of
further exceedances in the near future. Thaevalues for all ACD-POT models are statistically
significant. Interestingly, the size of the last exceedarpeesented by the coefficiefii is not as
important as the expectation of théh inter-exceedance time.

We observe further that for the gamma distribution pararsete getky > 1 andy < 1 for
all ACD-POT fitted models. This means that for these modelsdmelitional intensity is inverted
U-shaped. This sort of flexibility in the shape of the coraiil intensity was already noted to be
relevant by Lunde (1999) and Zhang et al. (2001). The majterdnce between the TE-POT and
the ACD-POT model results is that the latter allows a nonmamotconditional intensities, which
is able to put a lot of probability mass on small durationsrmittoo much probability mass on
very small durations.

The results on the goodness of fit in-sample for the modedsifiti the log-retuns are displayed
in Figures 4.1 and 4.2 for the WTI and Brent markets respegtivel

Firstly, we assess the conditional GPD assumption of thé&snarthe models fitted. To this
end, we provide the W-statistic explained in details in ApgigB. This statistic forms an iid
sequence of exponential random variables with mean one ifnidrks are GPD. According to the
QQ-plots displayed in Figure 4.1 for the WTI log-returns, veendt observe a substantial deviation
from an exponential distribution in all cases. For instatmeeKolmogorov-Smirnov test gives as
result;D = 0.0338 with p-value 0.815 for the TE-POTh model= 0.0331 with p-value 0.826 for
the TE-POTe modeD = 0.0388 with p-value 0.649 for the gACD-POT model, dnd= 0.038
with p-value 0.677. In the case of the Brent log-returns, @seiits are very similar though some
differences can be observed. The Kolmogorov-Smirnov testsgas resultD = 0.0329 with
p-value 0.829 for the TE-POTh modé, = 0.078 with p-value 0.023 for the TE-POTe model,
D =0.071 with p-value 0.0506 for the gACD-POT model, dne- 0.065 with p-value 0.096. The
above results indicates that for the TE-POTe model the pplbthesis can be only accepted at the
1% significance level.

Furthermore, we would like to check that there is no furtheretseries structure, for this
reason the autocorrelation function (ACF) for the resid@adgldle panel) is also included. The
autocorrelations is negligible at nearly all lags for the Wiidrket. In the case of the Brent market
we observe some differences, especially for the ACD-POT iiso&amining the autocorrelation
of the residuals formally by means of the Ljung-Box statisticler the null hypothesis that the
first teen autocorrelations are zero, we found that the rydbthesis is not only rejected for the
TE-POT models at the 5% significance level. In particulag, TE-POTh model has a chi-squared

15



QQ Plot

QQ Plot

QQ Plot

QQ Plot

o_
-
N o
w -
a4
o -

ve
* .

o -
N -
~ -

o_
-
~ -
w -
s
o -

ACF

ACF

ACF

ACF

00 02 04 06 08 1.0 00 02 04 06 08 1.0 0.0 02 04 06 08 1.0

0.0 02 04 06 08 1.0

16

Cumulative number of exceedances Cumulative number of exceedances Cumulative number of exceedances

Cumulative number of exceedances

150 250 350

50

150 250 350

50

200 300

100

200 300

100

Transformed time

o o
a ]
o

150 250 350

Transformed time

T T T
100 200 300

o

Transformed time

T T T
100 200 300

o

Transformed time

Figure 4.1: Goodness of fit in sample: QQ-plots of the red&(eft), autocorrelation function of the residuals
(middle) and cumulative numbers of the residual processugethe transformed timgr;} (right), for the models
applied to the log-returns of the WTI market. From top to bmttéhe time event peaks over threshold model with
Hawkes kernel (TE-POTh), the time event peaks over threlgholdel with ETAS kernel (TE-POTe), the ACD model
for the expected conditional duration with generalized gendistribution for the standardized residuals (QACD-
POT), and the Log-ACD model for the expected conditionaktian with generalized gamma distribution for the
standardized residuals (gLog-ACD-POT).
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Figure 4.2: Goodness of fit in sample: QQ-plots of the red&(eft), autocorrelation function of the residuals
(middle) and cumulative numbers of the residual processugethe transformed timgr;} (right), for the models
applied to the log-returns of the Brent market. From top ttidro, the time event peaks over threshold model with
Hawkes kernel (TE-POTh), the time event peaks over threlgholdel with ETAS kernel (TE-POTe), the ACD model
for the expected conditional duration with generalized gendistribution for the standardized residuals (QACD-
POT), and the Log-ACD model for the expected conditionaktian with generalized gamma distribution for the
standardized residuals (gLog-ACD-POT).



statistic of 7.744 and a corresponding p-value of 0.171)emMfie TE-POTe model, has a chi-
squared statistic of 9.861 and a corresponding p-value(0. The results for the ACD-POT
model could indicate that the specification of the scalingeeter is not flexible enough to model
the marks or exceedances, since the scaling parameteficgtgmn only linearly depends on the
temporal intensity of the inter-exceedance times and thgnmade of the marks.

Finally, in order to determine the quality of the times comeot of our models, i.e., the con-
ditional intensity of the ground procegg, we employ the residual analysis method for point
processes resumed briefly in the AppendixB. This is basedenlthnge of time scale using the
estimated conditional intensity. We investigated whethertransformed time-scale version of
the data constitutes a homogeneous Poisson process acrtrdine residual analysis introduced
by Ogata (1988). The residual analysis for both marketscatds that all models seem to be
acceptable in the changed time scale.

From the point of view of the market risk, we calculate the YaRample from the different
models for both markets, which are displayed in Figure 4akinig a closer look at VaR estimates,
there are clearly key aspects that mirror the complexityagitaring the extreme event dynamics
by a model in response to an unpredictable, volatile ang skironment, as for example, the
spikes reflected in the figures when the Gulf war and the IragaMamenced in 1990 and 2003,
respectively. A deeper analysis of the VaR will be done whenrealize the backtesting of all
models. The quotation from Aaron Brown (Risk Manager) in theedduly 2008 issue of the
“Global Association of Risk Professionals” perfectly déises the importance of backtesting VaR
models: “Value-at-Risk is only as good as its backtest. Whemesme shows me a Value-at-Risk
number, | don’t ask how it is computed, | ask to see the batktes

For this reason, we include all models in the backtest inrdalkeave a comparison of different
alternatives, not only the best one in-sample.

Backtesting the models

Backtesting provides invaluable feedback about the acgwathe models proposed to risk
managers. The archetypal market risk model is a model thhatésts the VaR of a portfolio
or stock market over one or more confidence levels, for a Bpddnorizon. In this paper the
backtest method consists of comparing the estimated ¢onditvVaR for one day time horizan
given knowledge of returns up to and includinfpr three different confidence levels (0.95, 0.99,
and 0.999). For each day in the backtest we reestimate thelsy@bmething that immediately
reveals possible stability problems of a model. Then, wstieated the risk measures for each
return series according to the equation (3.3).

In addition, we provide empirical evidence on the accuracgiabual VaR measures derived
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Figure 4.3: In-sample VaR estimates at the 0.99 confidevet fier the WTI (top panel) and Brent (bottom panel) marketstifieir negative log-returns.
The sample period spans from 2 January 1990 to December 8%, dbe black line is the VaR estimation. From right to |efie time event peaks over
threshold model with Hawkes kernel (TE-POTh), the time épetaks over threshold model with ETAS kernel (TE-POTe) AG® model for the expected
conditional duration with generalized gamma distribufionthe standardized residuals (JACD-POT), and the Log-Afiddlel for the expected conditional
duration with generalized gamma distribution for the stadized residuals (gLog-ACD-POT).



from the models. The first test is an unconditional coveragd®d) test (Christoffersen, 1998).
The idea is to test if the fraction of violations obtained &particular risk measure significantly
differs from the theoretical one. A violation of the VaR orth# defined as occurring when the
ex-post return is lower than the VaR. A second test proposedhistoffersen (1998) is a test of
independencelRg) among VaR violations, where under the null hypothesis,otation today
has no influence on the probability of a violation tomorrowheTthird test is a combination of
the last two tests which is known as the conditional covefag.) test. The fourth approach,
proposed by Berkowitz et al. (2009), tests for uncorrelatsdramong the VaR violations. In
particular, we suggest the well-known Ljung-BdXT() test of the violation sequence’s autocorre-
lation function. The last test, named the Dynamic Quanfil®) test, was introduced by Engle
and Manganelli (2004). The idea is to regress the violatmnthe VaR for the present period on a
judicious choice of explanatory variables. In our case ptleth by theDQyj, the regressor vector
contains one constant and lagged VaR violations. All ofélrasasures are reviewed briefly in the
AppendixC.

Table 3 reports the results on the VaR backtesting exerorsallf confidence levels. Entries
in the columns are the significance levels (p-values) of éispective tests. A p-value less than or
equal to 0.05 will be interpreted as evidence for rejectirgriull hypothesis.

We observe that for all the models the results are more thizsfegdory. These indicate that
no severe clustering of exceedances is present and thatfResidlations can be considered as
independent at all the confidence levels. The major difieedretween the TE-POT and ACD-
POT models is that the latter have the lowest average ValRy() across all VaR levels. In other
words, ACD-POT models on average bring about the lowestaapijuirement.

Overall, the assessment of our results shows that the MSERRIsnare stable and reliable,
implying that this approach of modeling extreme values carused for further application of
extreme events. Moreover, these models allow us to take eagykailness or the stochastic
nature of the cluster of extreme events into consideration.

The results for the MSEPP models can be summarized as follows

e Theresults in-sample lead to markedly favor the ACD-POT rhaperoach according to the
AIC. However, the results in goodness of fit indicate that tBePIOT models performance
best. This is probably due to the specification of the scghagmeter in the ACD-POT
model. This means that the parametric specification for tladirey parameter may be not
flexible enough, because it depends linearly on the tempuaeadsity of the inter-exceedance
times and the magnitude of the marks.

e The quality of the conditional intensity of the ground presét by means of residual anal-
20



Models for WTI a %Viol. LR, LRng LR BT DQy VaR,

TE-POTe 0.95 19 0.71 0.27 051 021 0.29 3.33
0.99 3 0.56 083 083 0.88 0.83 5.23

0.999 1 044 094 0.74 096 0.83 9.91

TE-POTh 0.95 17 0.40 0.23 034 038 0.24 3.48
0.99 3 0.56 083 0.83 0.88 0.83 5.70

0.999 1 044 094 0.74 096 0.83 11.35

gACD 0.95 19 0.71 0.27 051 0.21 0.29 3.35
0.99 5 0.67 0.73 086 0.80 0.73 5.02

0.999 1 044 094 074 096 0.73 9.09

gLog-ACD 0.95 18 055 0.22 040 015 0.24 3.39
0.99 6 0.38 0.67 0.63 0.76 0.68 5.11

0.999 1 044 094 0.74 096 0.67 9.34

Models for Brent o %Viol. LRy LRng LR BT DQy VaRy

TE-POTe 0.95 13 0.07 036 0.12 051 0.37 3.48
0.99 2 0.24 089 050 092 0.89 5.68

0.999 1 044 094 074 096 0.89 10.46

TE-POTh 0.95 13 0.07 036 0.12 051 0.37 3.39
0.99 2 024 0.89 050 0.92 0.89 5.57

0.999 1 044 094 074 096 0.89 10.33

gACD 0.95 14 0.11 0.32 0.18 047 0.33 3.42
0.99 6 0.38 0.67 0.63 0.76 0.68 5.14

0.999 1 0.44 094 0.74 096 0.67 8.72

gLog-ACD 0.95 13 0.07 036 0.12 051 0.37 3.53
0.99 5 0.67 0.73 086 0.80 0.73 5.35

0.999 1 044 094 074 096 0.73 9.13

Table 3: Goodness of fit to assess the predictive performiartbe backtest of the models under consideration for the
WTI and Brent market returns. Entries in the columns are tifstance levels (p-values) of the respective tests, with
exception of the levelr and the number of violations at the VaR (%Viol.). The first iesan unconditional coverage
(LRy¢) test (Christoffersen, 1998). A second test proposed bys@ifiersen (1998) is a test of independenicBi(q)
between violations of the VaR, where under the null hypathawiolation today has no influence on the probability
of a violation tomorrow. The third test is a combination af thst two test which is known as the conditional coverage
(LRc) test. The fourth approach proposed by Berkowitz et al. 92@6sts for uncorrelatedness of the violations. In
particular, we suggest the well-known Ljung-BdXT) test of the violation sequence’s autocorrelation functidbhe
last test, named the Dynamic Quantile (DQ) test, was intedwy Engle and Manganelli (2004). The idea is to
regress the violations on the VaR for the present period ardigipus choice of explanatory variables. In our case,
denoted by th®Qyjt, the regressor vector contains one constant and laggeativiod of the VaRVaR, denotes the
average value of the VaR estimates.
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ysis method for point processes indicates that all modeisige be acceptable in the trans-
formed time-scale version of the data, which constitutesradgeneous Poisson process.

e Major improvements in VaR predictions (backtesting) arei@ed in all aspects when ac-
counting for the extreme event dynamics by means of the gexgponodels. In addition,
VaR violation ratios are statistically equal to the theimadtvalues in all cases, and VaR
violations are independent when using either the TE-POTehodthe ACD-POT model,
the latter being preferred overall.

5. Conclusions

The impact of extreme events on crude oil markets is of grepbrtance in crude oil price
analysis due to the fact that those events generally not simbyv strong impact on crude oil
markets but also in world stock markets. Although, somedithese extreme movements in crude
oil prices can be due to the behavior of events exogenougetm#troeconomy, as for example;
the outbreak of the 1990 Gulf War or the 2003 Iraq War.

For better estimation of the impact of extreme events onecnildorice, this study attempts to
use a marked self-exciting point process (MSEPP) appraadhé task. In the proposed method,
we make use of two new classes of MSEPP models that seenuteiiavell suited. The idea was
to create a model being able to incorporate stylized faath as clustering of extreme events and
autocorrelation of the inter-exceedance times of extreveats, i.e., properties that are observed
in crude oil markets. The first class of models is formulateclation to the time of occurrence of
the extreme events. We call this class of models Time eveifit(#&-POT) models and it is able
to generate power-law or exponential decay between extesargs and short-term cluster burts.
The second class of models can be interpreted as a comitetioveen the classical Peaks Over
Threshold (POT) model from Extreme Value Theory and thesotdAutoregressive Conditional
Duration (ACD) models that are popular in finance for highgtrency data analysis. For this
reason we call it ACD-POT models.

The main conclusions that can be drawn from our empiricastigation in the WTI and Brent
oil markets can be summarized as follows. The VaR estimatderudifferent high confidence
levels exhibit strong stability through a range of the sieléc¢hresholds, implying the accuracy
and reliability of the estimated risk measures.

Overall, the assessment of our results shows that the MSERRIsnare stable and reliable,
not only in-sample results but also in the backtesting, yamgl that these approaches of modeling
extreme values can be used to further applications. Finaddible regions and simulation of
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future risks could be derived, which would provide inteeglsbrganizations and managers with a
valuable measure of short term uncertainty.
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AppendixA. Threshold choice for EVT

Observe that under the MSEPP method only the tail ifdexmains constant, while the scale
parameter varies through time. From the point of view of thlemeasures, a robust fit to a sample
of extreme events and a good estimate of risk measures, agdorple VaR, would be relatively
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insensitive to departures from the model. This is valuablactual financial problems where one
of the most important objectives is to obtain a robust measetirisk. However, EVT implemen-
tation faces many challenges, one of the most importanghibia fact that EVT is designed for
independent observations. Crude oil market returns tend tependent, and therefore, a standard
methodology for threshold selection does not exist.

The critical point in threshold selection is that by inciegsthe number of observations for
the series of maxima, some observations from the centeredfitribution are introduced in the
series, and that the tail indéxas well as the VaR estimate are more precise but biasedltieee,
is less variance). On the other hand, choosing a high thigsbduces the bias but also makes the
estimates more unstable.

Thus, the main objective in this section is to determine hemsgive the MSEPP framework
is to the choice of the threshold and in particular the VaR estimates obtained by means eéthe
models. To this end, we choose the optimal threshold intdytday choosing an interval where
the threshold quantile seems to be more stable in relatidhetd/aR estimate. To compare the
different intervals, we computed the mean squared errorE)M@intwise of the estimators as
follows:

e We fix in advance a grid of size 2010 of possible threshold-quantilgg$qgy € [0.85,...,0.94]
for k=1,...,10 with, gx < gk, for all k'), and different confidence levets for the VaR
estimatesd; < [0.95,...,0.999 for j = 1,...,10) that will be estimated through a TE-POT
or ACD-POT Model.

e We choose a quantile threshalgd and estimate a suitable TE-POT or ACD-POT model.
Since the estimate of the VaR are time varying we compute amalaeVaR(qy, a;) for
each VaR levetrj (the results of these estimations are displayed in Figute) A.

e To compare the different estimates, we calculate the falgWISE

MSEsq (Ok — ks 1) = (VaR(ak, a;) —VaR(0k1, a1))”

M

Ol =

J

¢ Finally, we choose the threshold by selecting an intervamlthe threshold quantile seems
to be more stable.

For example, in Figure A.1 we display tMaR(qk,aj) estimates for the analysis of threshold

selection for the proposed models. The results indicateattiaast for all the returns that we have

considered, the threshold selection seems to have lintifegence on the VaR estimates. In Table
24



Models 100x MSEsq (ak — Ok-1) for the WTI market
Ok —Ok+1 0.85-0.86 0.86-0.87 0.87-0.88 0.88-0.89 0.89-0.90 0.90-0 0.91-0.92 0.92-0.93 0.93-0.94

TE-POTh 0.043 0.114 0.308 0.233 0.444 2.229 1.193 0.285 1.035
TE-POTe 9.467 26.885 3.109 5.109 2.332 3.806 3.494 1.399 0.416
gACD-POT 0.184 0.085 0.642 0.162 1.224 1.006 0.401 0.761 0.552
gLogACD-POT 0.403 0.770 1.638 0.179 0.421 1.438 0.318 0.528 0.605
Models 100x MSEsq (0k — Ok-1) for the Brent market
O«—Ok.1 0.85-0.86 0.86-0.87 0.87-0.88 0.88-0.89 0.89-0.90 0.90-0 0.91-0.92 0.92-0.93 0.93-0.94
TE-POTh 0.015 0.059 0.021 0.132 0.319 0.021 0.572 0.484 0.063
TE-POTe 0.939 0.702 1.261 1.462 1.528 1.311 0.881 0.613 0.725
gACD-POT 0.268 0.122 0.002 0.535 0.505 1.047 0.973 0.691 1.214
gLogACD-POT 1.007 0.181 0.014 0.439 1.031 1.296 1.543 0.885 0.95

Table A.4: MSE(,J. (gk — k1) estimates for the threshold selection for the WTI and Bremnketa.

A.4, we display the values of tiHdSEs, (g — Ok.1) respect to the thresholds intervals— gk, 1.
We observe that most threshold dependent models are theOTE-fodel.
This table shows that a threshold between the quanti®&sdnd 093 may be the most justified

for all models because of the fact that between these twotilpsgithe models showed a great
stability.

AppendixB. Goodness of fit in sample

Residuals Analysisresidual analysis for point process involves rescalindnioming the original
point process in order to obtain a new point process thatrisdgeneous Poisson. The com-
mon element of residual analysis techniques is the corigirucf an approximate homoge-
neous Poisson process from the data points and an estina@tdiianal intensity function
;\g(t | 74). Suppose we observe a one-dimensional point profdess.,t,} on[0,T) with
conditional intensity\g(t | 7%). It is well known that the points

ti
= [ Aglt] A)ds (B.1)

for i =1,...,N(T) constitute a homogeneous Poisson process of rate 1 on amainte
[0,N (T)] which is threfore part of a transformed time axis. This nempprocess is called
the residual process. If the estimated moijﬁt | /) is close to the true conditional inten-
sity, then the residual process resulting from repladig@ | %) with ﬁg(t | 74) in (B.1)
should closely resemble a homogeneous Poisson procest df. radhe resulting property
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TE-POTe TE-POTh gACDPOT glLogACD-POT

Figure A.1: The mean value of the average VaR estin¥&¥ o, a;) for all the models for the WTI (top panel) and Brent (bottomglafog-returns, for
each VaR confidence level, (a; € [0.95,...,0.999 for j = 1,...,10) and threshold-quantitp(gx € [0.85,...,0.94 fork=1,...,10).
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of exponentially distributed durations enables us to tstle presence of a homogeneous
Poisson process via a Kolmogorov-Smirnov test.

W-statistics In the case of the marks, we provide the W-statistics in otol@ssess our success
in modeling the temporal behavior of the exceedances ohttesholdu. The W-statistic is

defined by
X—U
W =& 1In (1+ E—> :
B(ty|74)
This statistic states that if the GPD parameter model isscbrthen the residuals are approx-
imately independent unit exponential variables. In pcagtihe independence assumption

can be checked via an ACF plot of the residuals.

AppendixC. Accuracy of VaR

Test of Unconditional Coverage LR,¢): Christoffersen (1998) terms the sequence of VaR fore-
casts efficient with respect to the historf_1 if E[l; | 4_1] = a, wherel; =1 (r; < —VaR)
with T being the indicator function. Due to the fact that.74_1 ~ Ber(a),t =1,2,...,T.
Applying iterated expectations implies tHats uncorrelated (unconditional coverage) with
any function of a variable in the information set availallis can be tested by means of a
likelihood-ratio test

LRuc=2[Z (G:l1,....1) — L (i1, ... 10)] ~ X2,

where.Z is the log binomial likelihood. The maximum likelihood est@tiond is the ratio
of number of violationsns, to the total number of observatiorls = ng+ n;.

Test of Independencel(Riq):Christoffersen (1998) suggests a test of independence by model-
ing the number of violationk as a binary first order Markov chain with transition probipil
matrix

m— 1-m1 o1
1-mq; 1

]7 TEJ:P(lt:J“t—l:I)u

as the alternative hypothesis of dependence. The joinHiketl, conditional on the first
observation is given by

L(T[*; lo,..., 17 ‘ |1) = (]__ Tbl)noo-i-nlo 7-l(f)‘5)-1+r1117

where njj represents the number of transitions from state statej. The maximum-
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likelihood estimators under the alternative hypothesss ar

. No1 ~ N11
M =——— and 7 =—"—.
Noo + No1 N1o+N11

Under the null hypothesis of independence, we have 1 = 751, from which the condi-

tional binomial joint likelihood is defined as

L (T[; |2, ceey IT ‘ |1) = (1— 7'@1)”00 gl (1— T[ll)nlo Tq%_l
Similar to the unconditional coverage test, the likelihoatio test is given by
LRna = 2[Z (1512, It [ 1) = Z (12, J | 11)] ~ i

Conditional Coverage (R.c): Christoffersen (1998) suggests combining the unconditioma
erage test and the test of independence in order to testtomeditional coverage, because
T° is unconstrained. Then, we have

LRcc = LRyc+ LRing ~ X3.

We can jointly test for independence and correct coveraggule conditional coverage

test.
Ljung-Box test (BT): we implement a test statistics proposed by Berkowitz et 8092 for the
autocorrelations of de-meaned violatidfi; (o) = It — o, which form a martingale differ-

ence sequence. This is a Ljung-Box statistic, which is a jeisit of whether or not the first

mautocorrelations oflit; (a) are zero by calculating
v ¢
L m=TT+2)§ X
Buar(m) =T (T+2) 3 775

whereT is the sample sizak is the sample autocorrelation at legndLByar(m) is asymp-
totically chi-square withm degrees of freedom.

Dynamic quantile test OQyit): A relevant VaR model should also feature a sequence of VaR vio
lations which are not serially correlated. Engle and Maet/af2004) suggest the Dynamic

Quantile PQ), which can jointly test the hypothesis tHafHit; (a)] = 0 and thaHit; (a)
is uncorrelated with the variables included in the inforioraset, whereHit; (o) = Iy — a.
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Both tests can be done using the following artificial reg@ssi

. —a, with probability 1— o
Hit; = XB +u,
1—a, with probabilitya
where, under the null hypothesidg = =0, i.e, the regressors should have no explanatory
power. Considering that the regressors are not correlatixdiva dependent variables under
the null hypothesis, invoking a suitable central limit thesm Engle and Manganelli (2004)
deduce the test statistic Bx’xﬁf
DQ= a(l—a) ~ X§+z,
wherep is the number of explanatory variabl¥s In the empirical application, we use the
dynamic quantile hit@Qy,; ) test, whose regressor matd contains a constant and one

lagged hit.
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