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Abstract

Crude oil is a dynamically traded commodity that affects manyeconomies. We propose a

collection of marked self-exciting point processes with dependent arrival rates for extreme events

in oil markets and related risk measures. The models treat the time among extreme events in oil

markets as a stochastic process. The main advantage of this approach is its capability to capture

the short, medium and long-term behavior of extremes without involving an arbitrary stochastic

volatility model or a prefiltration of the data, as is common in extreme value theory applications.

We make use of the proposed model in order to obtain an improved estimate for the Value at Risk

in oil markets. Empirical findings suggest that the reliability and stability of Value at Risk

estimates improve as a result of finer modeling approach. This is supported by an empirical

application in the representative West Taxes Intermediate(WTI) and Brent crude oil markets.

JEL classification:C22; G15; G32; Q47

Keywords: Extreme value theory, energy market risk, energy forecasting, value at risk, marked

self-exciting point process.

1. Introduction

In recent years oil industry has been continuously expanding and evolving with no sign of this

changing in the near future. Price fluctuations in the crude oil markets worldwide have attracted

significant attentions from both, managers and academics, due to the profound impact created on

businesses and governments, and due to the high complexity and wide price swings in times of

shortage or oversupply. In addition, oil futures are becoming an important investment instrument.
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For example, oil futures became an important hedge during the Subprime mortgage crisis in 2007

to 2008. Oil is considered to be a hedge at such times as it goesagainst the trend of the stock

market.

Good risk management begins with good risk framework; that is, understanding the likeli-

hood and magnitude of extreme events. Unfortunately, due tothe complicated unusual nature of

oil price fluctuations, current energy risk management practice has remarkable difficulty assess-

ing this class of events. By extreme events, we mean events that occur infrequently, even when

looking broadly across the time. This limitation is unfortunate because infrequent, but potentially

significant, events are precisely the kind of events that need the most attention and, with appropi-

ate attention, they can also produce the greatest benefits. Proper measurement and management of

risks due to unexpected oil price movements has been crucialfrom both, operational and strategic

perspectives. An example of extreme events are the changes in crude oil prices which affect oil

market traders, impact global economic activity, government policy and vice versa. For instance,

the Persian Gulf War in 1991 is recognized as one of the most serious events that strongly affected

crude oil markets in the 1990s.

Value at Risk (VaR) is the most popular and attractive method ofmeasuring risk for simple

concepts, and provides a single number that summarizes the total risk for financial assets. From

the point of view of Extreme Value Theory (EVT), a few studieshave considered VaR for crude

oil markets (Krehbiel and Adkins, 2005; Marimoutou et al., 2009). Krehbiel and Adkins (2005)

estimate tail parameters and construct risk statistics forunconditional distributions of daily loga-

rithmic price changes of the NYMEX energy complex. They apply the conditional extreme value

method to estimate VaR and related risk statistics from the tails of conditional distributions for

these commodities. The results of this work indicate that, for the backtesting, the conditional ex-

treme value approach is significantly more accurate for measuring the risk exposure of most of the

series examined. Marimoutou et al. (2009) utilizes standard EVT to model VaR for long and short

trading positions in the oil market by applying both unconditional and conditional EVT models

to forecast VaR. They compare these models to the performances of other well-known modeling

techniques, such as GARCH, Historical Simulation and Filtered Historical Simulation. The results

of this work show that both conditional EVT and Filtered Historical Simulation procedures offer

the greatest improvement over other conventional methods.Furthermore, their results confirm the

importance of the filtering process for the success of standard approaches.

The peculiar properties of the extreme events related to theoil price fluctuations, such as the

irregular spacing in time, the discreteness of price changes, the cluster of extremes as well as

the presence of strong correlation among the time duration among extreme events, make new
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econometric approaches, that take these issues into consideration necessary.

The contribution of this paper is two-fold. First, it explores dynamic EVT models that can cap-

ture the short-term dynamic of extreme events in crude oil markets without the use of an arbitrary

stochastic volatility model, which certainly impacts the measures of risk, such as VaR. Taking the

dynamical aspects within the cluster of extremes into account is absolutely necessary if one seeks

to exploit the full amount of information in oil prices. The method to be introduced takes advan-

tage of the structure of the model, thus allowing for more efficient use of the data. In this paper we

will consider two alternative generalizations for the classical point process theory in EVT to the

marked self-exciting point process (MSEPP) framework. A point process is defined as MSEPP,

when the past evolution can impact the probability of futureevents.

The first class of models is formulated in relation to the timeof occurrence of the extreme

events (Chavez-Demoulin et al., 2005, Herrera and Schipp, 2009, and Chavez-Demoulin and

McGill, 2012). We call this class of models time event peaks over threshold (TE-POT) and it

would be able to generate power-law and exponential decay between extreme events and short-

term cluster burst. The second class of models is the autoregressive conditional duration peaks over

threshold (ACD-POT). It is focused on the intervals between extreme events, the inter-exceedance

times (Herrera and Schipp 2012), and it is able to produce slow decay of autocorrelation and

medium and long-term cluster burst.

The second contribution of this paper is the empirical application of the proposed models to

two well known crude oil markets; the West Texas Intermediate (WTI), which trades on the New

York Mercantile Exchange (NYMEX), and the Brent oil market, which is the leading global price

benchmark for Atlantic basin crude oils and is used to price two thirds of the world’s internation-

ally traded crude oil supplies. Crude oil is not only the world’s most actively traded commodity,

but also the largest volume of futures trading of any physical commodity. Owing to its excellent

liquidity and price transparency, crude oil contracts serve as a key international pricing benchmark.

This is why estimating the risk in WTI and Brent crude oil is so important.

Our results show that the MSEPP models are stable and reliable, not only in-sample results but

also in the backtesting, implying that these approaches of modeling extreme values can be used

for further applications in energy markets. Moreover, major improvements in VaR forecasting are

achieved in all aspects when accounting for the extreme event dynamics by means of the proposed

models. In particular, VaR violation ratios are statistically equal to the theoretical values in all

cases, and VaR violations are independent when using eitherthe TE-POT model or the ACD-POT

model, the latter being preferred overall.

The remainder of the paper is organized as follows. Section 2offers a brief review of the
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classical EVT approach. Section 3 introduces the new general MSEPP specification for extreme

events. Furthermore, in this section we describe the two self-exciting approaches to be used in the

empirical study. Section 4 contains the empirical applications. Section 5 concludes.

2. Peaks Over Threshold (POT) method

Suppose that we can observe the returns through the time of a crude oil market, as for example

the Brent market. We denote these observations byY1, . . . ,Yn and we assume that the return se-

ries are independent and identically distributed (iid) random variables with common distribution

functionF .

Now, imagine that we observe this random distribution of observations{(ti ,yi)} whose values

exceeds a high thresholdu in a defined state spaceT ×Y = [0,1)× [u,∞), where the time has been

rescaled for convenience to the interval(0,1). By looking at the dynamic of such observations, we

concentrate only on the most extreme oil market returns.

On one hand, the time eventsti are the time of the i-th peak exceedance, i.e., the time in that

a return exceeds a defined high thresholdu. We refer to this process as the ground process. On

the other hand,yi −u is the exceedance sizes or marks for a sufficiently high threshold u and we

will call this process the process of the marks. A point processN(A) can be viewed as the counter

of these random observations in a setA⊆ T ×Y . Pickands III, 1971 demonstrated that this two

dimensional point process will look like as a non-homogeneous Poisson process with intensity

defined for all subsets of the formA = [t1, t2)× [y,∞) wheret1 andt2 are times of occurrence of

extreme events. This representation is as follows

λ (t,y) =
1
σ

(

1+ξ
y−µ

σ

)−1/ξ−1

+

, (2.1)

wherey+ = max(y,0). In this point processµ and σ determine the location and scale of the

extremes, whileξ characterize the rate of decay of the tail of the distribution of extreme events.

It follows from these characterizations that a complete summary of extremal behavior of this time

series is contained in the three parametersµ,σ ,ξ .

If we accept that the point process of exceedances is an one-dimensional Poisson, then the

process has independent increments, i.e., the number of eventsti that occur in disjoint time inter-

vals are mutually independent, which implies lack of memoryin the evolution of the process. In

addition, the number of extreme eventsti in any interval of length(t2− t1) is Poisson distributed
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with mean

Λ([t1, t2)× [y,∞)) =

ˆ t2

t1

ˆ ∞

y
λ (l ,s)dsdl= Λ1([t1, t2))×Λ2([y,∞)).

Notice that we have divided the intensity measureΛ into two independent Poisson process with

corresponding intensity measureΛ1 andΛ2. The first,Λ1, models the random time at which the

extreme events occur, while the second,Λ2, models the exceedance sizes.

Another important result of extreme value theory is the following limiting conditional proba-

bility, which characterizes the tail of the excess distribution function over the thresholdu.

P(Y−u≤ y |Y > u) =
Λ2([y+u,∞))

Λ2([u,∞))
=

(

1+
ξy

σ +ξ (u−µ)

)−1/ξ
= Gξ ,β (y), (2.2)

which is just the survival function of the generalized Pareto distribution (GPD), i.e.,Ḡ = 1−G,

with scaling parameterβ = σ +ξ (u−µ) for 0≤ y< yF . HereyF is the right endpoint with values

yF = ∞ if ξ > 0 andyF =−β/ξ if ξ < 0. We shall call this model the Peaks Over Thresholds or

POT model.

Observe that this methodology does not take into account thetime when these extreme events

occur because this assumes that the observations are independent, and therefore, that past obser-

vations do not have influence on future observations. In the following, we will explain our interest

in investigating extreme events in oil markets as a marked point process of exceedances. Figure

2.1 shows in the top panel the negative daily percentage log-returns of Brent shares between June

1, 1987 and December 31, 2010, and the times and sizes of the negative daily percentage log re-

turns exceeding a thresholdu= 3.15 (the 0.93 quantile). Notice that this contradicts the classical

model assumption of no cluster at the extremes. Indeed, under a homogeneous Poisson process

the inter-exceedance times should be independent exponential random variables. The lower left

picture shows an exponential probability plot for the inter-event times, these are clearly far from

exponential, giving evidence against a Poisson process of exceedances. Furthermore, the auto-

correlogram plot suggests clustering of the inter-exceedance times. This hypothesis is moreover

reaffirmed by the Ljung-Box statistic using 10 lags. The null hypothesis of white noise is easily

rejected with the Ljung-Box statistic of 143.43 well above the critical value of 18.307 at the 5%

level, rejecting the Null hypothesis.

Summarizing, the characteristics of oil markets, such as clustered extremes and serial depen-

dence, typically violate the assumptions of independence in the model. As a consequence, the

direct application of the classical POT framework seems to be nonviable.
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Figure 2.1: Upper left panel shows Brent daily percentage log-returns from 02.01.1990 to 18.01.2008. Upper right
panel displays the 732 largest losses (the exceedances). Lower left panel shows a QQ-plot of inter-exceedance times
against an exponential reference distribution. Finally, the lower right panel displays the autocorrelogram for the
inter-exceedance times for the exceedances.

3. Extending the POT method to marked self-exciting point processes

In this paper we define a marked self-exciting point process (MSEPP)N, as a set of ob-

servations, occurrence times and marks{(ti ,yi)} on the spaceT ×Y , whose historyHt =

({t1,y1} , . . . ,{tt−1,yt−1}) consists only of the occurrence times and marks{t1,y1} , . . . ,{tt−1,yt−1}

up to timet but not includingt. In our case the time eventsti are the times in that the returns exceed

a defined high thresholdu, while yi −u is the size of the exceedances or marks for a sufficiently

high thresholdu. Observe that under this point of view, the marks arise as thecomponent that car-

ries the information about the eventst in time and that may themselves have a stochastic structure

and stochastic dependency relations, but they do not correspond to a second dimension (see Daley

and Vere-Jones, 2003 for a more formal introduction).

As part of this point process, we define a ground point processNg, which models the stochastic

process of the inter-exceedance times with conditional intensity λg(t | Ht), and a generalized

Pareto density functionf (y | Ht , t) for the marks. This implies that the conditional expected
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intensity for the marked point processN is given by

λ (t,y | Ht) = λg(t | Ht) f (y | Ht , t) . (3.1)

Hereafter, we move away from Poisson models1 for the occurrence times of exceedance of high

thresholds and consider self-exciting models for the conditional intensity of the ground process.

We focus on point processes which evolve with after-effectsand which are conditionally orderly.

In this sense, marked self-exciting point process constitutes a suitable framework because it al-

lows the intensity of the ground processλg(t | Ht) to be modeled by a continuous function and a

non-negative (stationary) random process and also allows past evolution to impact the probability

structure of future events. Furthermore, it is particularly powerful for the modeling of multivari-

ate processes. For instance, specifying in terms of an autoregressive process yields a dynamic

intensity model which is particularly useful for capturingthe clustering of extreme events in risk

management.

The main idea in this class of models in extreme value theory is to replace the scale parameters

β in (2.2) by dynamical alternatives based on time varying functions, e.g.,β (t,y | Ht), so that the

Poisson intensity parameters are now functions of the timet and the past historyHt
2.

As result of this approach, we now have a time-dependent intensity measure of the form

λ (t,y | Ht) = λg(t | Ht) f (y | Ht , t) =
λg(t | Ht)

β (t,y | Ht)

(

1+ξ
y−u

β (t,y | Ht)

)−1/ξ−1

+

.

Notice that the distribution of the marks are assumed independent of the behavior of inter-exceedance

times. Indeed, the implied distribution of the marks when anextreme event takes place is given by

Λ2([u+y,∞) | Ht)

Λ2([u,∞) | Ht)
=

(

1+ξ
y−u

β (t,y | Ht)

)−1/ξ

+

= Gξ ,β (t,y|Ht)(y).

Note that the marginal distribution of the marks will now be conditionally independent of the as-

sociated ground process. Therefore, the product of mark densities simply has to be multiplied

with the likelihood of the ground process. LetN be a MPP on[t0,T) ⊆ X ×Y for some finite

positiveT with realizations(t1,y1) , . . . ,
(

tN(T),yN(T)
)

of N, andpi be a family of conditional prob-

ability density functions for arrival timeti , the log-likelihoodL of such a realization in terms of

1Observe that an alternative description of the Poisson process (2.1) is rewritten this as a special case of the MPP

(3.1), withλg(t | Ht) =−
(

1+ξ u−µ
σ
)−1/ξ
+

and f (x | Ht) =
1
β

(

1+ξ y−µ
β

)−1/ξ−1

+
, with β = σ +ξ (u−µ).

2We could also parametrize the shape parameterξ . However, the behavior of the estimation is severely affected.
For this reason it is reasonable to consider the shape parameter constant.
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the conditional densities or intensities is given by

L =
N(T)

∑
i=1

logpi (ti | Ht)+
N(T)

∑
i=1

log fi (yi | Ht , t) (3.2)

=
N(T)

∑
i=1

logλg(ti | Ht)−

ˆ T

t0

λg(s | Ht)ds+
N(T)

∑
i=1

log fi (yi | Ht , t)

3.1. Dynamic risk measures

Risk management embodies the process and the tools used for evaluating, measuring and man-

aging the various risks within a Company’s portfolio of financial, commodity and other types of

assets. In the case of oil markets, VaR can be used for instance to quantify the maximum oil price

changes associated with a likelihood level, to avoid big losses due to price fluctuations or changing

energy consumption patterns and to meet regulatory requirements that limit exposure to risk. For

the MSEPP models the VaRt∗
α is defined as theα-th quantile of a distribution at the timet∗ > t

which is solution toP(yt∗ > y | Ht) = 1−α. Observe that under our framework this measure can

be derived from the time-dependent intensity measure as follows

P(yt∗ > y | Ht) ≈

ˆ t∗

t
λ (l ,y | Ht)dl

= λg(t
∗ | Ht)×Λ2([y,∞)).

Thus, solving this equation for some value ofy≥ u the VaR is defined by

VaRt∗
α = u+

β (t,y | Ht)

ξ

(

(

1−α
λg(t∗ | Ht)

)−ξ
−1

)

. (3.3)

The last equation implies that the VaR is only defined for our models ifλg(t∗ | Ht)> 1−α.

Novels MSEPP and applications to extreme value theory have been presented in Chavez-

Demoulin et al. (2005), Herrera and Schipp (2009), Chavez-Demoulin and McGill (2012) and

Herrera and Schipp (2012). In this paper we will consider twoalternative generalizations for the

classical point process methodology in extreme value theory. The first class of models is formu-

lated in relation to the time of occurrence of the extreme events “the time event POT models”,

while the second class of models is focused on the intervals between extreme events, the inter-

exceedance times, “the autoregressive conditional duration POT models”.
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3.2. Time event POT models (TE-POT)

This class of models is obtained by specifying, the intensity of the ground processλg(t | Ht)

and the scale parameterβ (t,y | Ht) as a (linear) self-exciting process given by

λg(t | Ht) = k+φ ∑
i:ti<t

g(t − ti ,yi)

β (t,y | Ht) = β0+η ∑
i:ti<t

g(t − ti,yi)

wherek andβ0 represent the background rate of events, which in most applications is assumed to

be constant in time, whileφ ,η ≥ 0 and the kernelg(·) denote the magnitude of self-excitation and

density at which self-excitation is triggered, respectively. Note that each time a new point arrives

in this process, the conditional intensity (the time varying scale parameter) grows byφ (η) and

then decreases exponentially back towardsk (β ). In other words, a point increases the chance of

attaining other points immediately afterwards, and thus, this is the best model for clustered point

patterns. Many forms forg(·) have been proposed in the literature, though in general the kernel is

chosen so that the risk increases with extreme event magnitude and decreases in time away from

each event. In this paper we use two different kernel functions.

gH (t − ti ,y) = (1+δy)exp(−γ (t − ti)) and gE (t − ti ,y) =
(1+δy)

(

1+ t−ti
γ

)1+ρ ,

wheret − ti denotes the time elapsed since an extreme eventy has occurred at the timet. We refer

to gH (t − ti,y) as the Hawkes kernel andgE (t − ti ,y) ETAS kernel (Epidemic Type After Shock ).

For more on this class of models applied on risk management see Chavez-Demoulin et al. (2005) ,

Herrera and Schipp (2009) and Chavez-Demoulin and McGill (2012). Observe that in the general

formulation of these models, the marks are conditionally independent since the ground intensity

does not depend on the past marks.

3.3. The Autoregressive conditional duration POT model (ACD-POT)

In the second alternative specification, the intensity is driven by an autoregressive process

which is updated at each point of the process. These types of specifications were initially proposed

by Herrera and Schipp (2012). This leads to a special type of point process model which does not

originate from the classical point process literature but rather from the autoregressive conditional

duration (ACD) literature (see Engle and Russell (1998)). We define a model for the conditional

intensity of the ground point process of exceedances depending only on a fixed number of the most

recent inter-exceedance timesxi = ti − ti−1. The ACD model is defined as follows
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xi = ψiεi

ψi = ψi (xi−1, . . . ,x1;θ)

whereψi (xi−1, . . . ,x1;θ) is the duration conditional on all information up to and including time

ti−1, θ is a parameter vector andεi are iid random variables. Two specifications are considered

in this paper for the conditional expected duration. The first is the most popular autoregressive

conditional duration model (ACD model), introduced by Engleand Russell (1998) and is based on

a linear parameterization of the conditional mean function

ψi = w+
p

∑
j=1

a jxi− j +
q

∑
j=1

b jψi− j ,

wherew > 0, a,b ≥ 0. In order to ensure the stationarity and existence of the unconditional

expected duration we need∑p
j=1a j +∑q

j=1b j < 1.

The second model is the logarithmic ACD (Log-ACD) model, introduced by Bauwens and

Giot (2000) in order to preventψi becoming negative, in which the autoregression bears on the

logarithm of the conditional expected duration3

ψi = exp

{

w+
p

∑
j=1

a j logxi− j +
q

∑
j=1

b j logψi− j

}

.

To find a general expression for the conditional intensity ofthe ground processλg(xi | Ht ;θ),
let fε andSε be the density function and the associated survival function of εi, respectively. One

can easily show that the conditional expected intensity of the inter-exceedance times between ex-

treme events, the ground process, can be expressed as a multiplicative effect between the baseline

hazard function and a self-exciting point process shift given by the expected duration

λg(xi | Ht ;θ) = λ0

(

xi

ψi

)

1
ψi

. (3.4)

whereλ0(t) = fε (t)/Sε (t) is defined as the baseline hazard function.

The second important ingredient in the parameterization ofthe ACD models is the distribu-

tional assumption for the innovation process. In this paperwe propose the generalized gamma

distribution4. The major advantage of this distribution is that this has a non-monotonic hazard

3For a meaningful comparison of alternatives in relation to TE-POT models and for simplicity, we limit the dy-
namic structure of the ACD-POT models to the first lag order only in the empirical study.

4During the fist draft of this paper we take different ACD-models into account to find the best approach with
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function taking bathtub shaped or inverted U-shaped form. In a bathtub shaped form the hazard

rate initially decreases, during the middle phase the hazard rate is essentially constant, and in the

final phase the hazard increases. Inverted U-shaped forms are the counterparts; the hazard rate

initially increases, then becomes close to constant and ultimately decreases. This feature is of par-

ticular importance if we are interested in modeling risk measures such as the VaR or the expected

shortfall.

Lunde (1999) as well Zhang et al. (2001) propose the use of a generalized gamma distribution

to characterize the standardized durations because one canthen obtain a non-monotonic hazard

function and a time-varying conditional mean duration. A three parameter generalized gamma

density is given by

f (x | γ,k) =
γxkγ−1

λ kγΓ(k)
exp
{

−
( x

λ

)γ}
, x> 0.

It includes the exponential distribution (γ = k = 1), the Weibull distribution (k = 1), the half-

normal (γ = 1/2, k = 1) and the ordinary gamma distribution (k = 1). Under the restriction that

λ = 1 we choseφi = ψi
Γ(k)

Γ
(

k+ 1
γ

) which implies a conditional intensity for the ground process given

by.

λg(xi | Ht ;θ) =

γxkγ−1
i

φkγ
i Γ(k)

exp
{

−
(

xi
φi

)γ}

I
(

k,
(

xi
φi

)γ) ,

whereI
(

k,
(

xi
φi

)γ)
=
´ ∞
(

xi
φi

)γ uk−1exp(−u)du is the upper incomplete gamma integral. Note that

if k = 1, then we get the Weibull-ACD model, while fork = γ = 1 the model reduces to an

Exponential-ACD model.

In addition, for the scale parameterβ (t,y | Ht) we consider a lineal parameterization such that

it depends on the history.

β (t,y | Ht) = β0+β1yi−1+β2ψi

This feature implies that the marks are conditionally generalized Pareto distributed, given the

historyHt up to the time of the mark like the TE-POT models. These modelsassume that in a

period of turmoil the temporal intensity of the inter-exceedance times and the magnitude of the

marks linearly influence the scale parameter.

different distributional assumptions, as the Burr, Weibull or exponential for the standardized duration times. Our
analysis with financial time series have suggested that by model comparisons based on the likelihood ratio statistic
and AIC, the proposed models give the best fit keeping the formulation easy to understand.
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4. Empirical analysis

One of the purposes of this work is to contribute to the literature on energy prices by studying

the impact of extreme events on the determination of measures of risk for oil price returns. How-

ever, an important aspect for the implementation of the models proposed in the above section is the

determination of the threshold beyond which the observations are assumed to follow a generalized

Pareto distribution.

The issue of how to choose the threshold is similar to that of selecting the size of a block in

classical EVT in the sense that both imply a balance between bias and variance. A low thresholdu

leads to failure in the asymptotic approximation of the model and a high thresholdu provides few

observations and then high variance. Actually, the choice of the optimal threshold is still consid-

ered an open problem and different approaches have been proposed to overcome this difficulty. For

instance, Chavez-Demoulin et al. (2005) recommend choosinga threshold so that about between 5

and 10% of the data are excesses, while Herrera and Schipp (2012) propose a sensitivity analysis

based on a mean squared error, to assess the stability of the VaR among different thresholds. In

this paper we choose to work with the 7% of the maxima of the sample, the choice of the threshold

is explained in detail in AppendixA.

In relation to the measures of goodness of fit in-sample we utilize the W-statistics to assess

our success in modeling the temporal behavior of the exceedances of the thresholdu. This statis-

tic states that if the GPD parameter model is correct, then the residuals should approximately be

independent unit exponential variables. In addition, to check that there is no further time series

structure the autocorrelation function (ACF) for the residuals is also included. Similarly, to ap-

praise the quality of the times component of our model, we employ the residual analysis for point

process. All of these methods are resumed briefly in AppendixB.

4.1. Data set and summary statistics for WTI and Brent crude oil price returns

We use the daily closing price in both US West Intermediate Taxes (WTI) market and Europe

Brent (Brent) market, which are two of the major marker marketsin the world. The data source is

the Energy Information Administration, Department of Energy, US. The sample period spans from

2 January 1990 to December 31, 2009. A second sample is used for backtesting the estimation

of the VaR for the two markets from 4 January 2010 to August 22,2011. In this study we only

concentrate on the left tail, so that the daily returns are calculated asrt =−100ln(pt/pt−1), where

pt denotes the stock price at dayt. In the backtest we daily update the new information that

becomes available for the parameter estimates previously obtained. Thus, we dynamically adjust

quantiles, which allows us to as accurately as possible improve the estimation of the risk measures.

12



Table 1 presents some relevant summary statistics regarding the unconditional distribution of

the returns. The statistics show that all returns exhibit skewness to the losses as well as excess of

kurtosis, hence we may deduce that each return has a leptokurtic distribution with a fat left tail. In

other words, the returns analyzed here do not have the standard normal distribution. Verification

is given by the results of Jarque Bera test. Serial correlation by means of a Ljung-Box test was

not rejected for WTI and Brent returns with a statistical significance at the 1% and 5% level

respectively. In addition, both returns are stationary series by means of ADF unit root test.

Indexes mean sd min max skewness kurtosis Q(x) Jarque-Bera ADW
WTI 0.024 2.584 -40.639 18.867 -0.921 19.915 19.753* 61897.960* -16.185*
Brent 0.025 2.436 -36.121 18.129 -0.749 18.120 11.647** 49357.420* -15.827*

Table 1: Summary statistics for the stock market returns analysed. Asymptotic p-value are shown in the brackets.
*,**,*** denote statistical significance at the 1, 5 and 10% level respectively. The Ljung-Box test statistic (Q) for
serial correlation is calculated up to the 5-th order.

4.2. Model estimation and results

In order to adequately summarize the large quantity of empirical results obtained, we use the

following classification scheme for the MSEPP models:

• TE-POTh: time event peaks over threshold model with Hawkes kernel.

• TE-POTe: time event peaks over threshold model with ETAS kernel.

• gACD-POT: ACD model for the expected conditional duration with generalized gamma

distribution for the standardized residuals.

• gLogACD-POT: Log-ACD model for the expected conditional duration with generalized

gamma distribution for the standardized residuals.

We have four models in total. Observe that we could obtain other submodels by restricting, for

example, the scale parameter to be constant through the time.

Empirical results

The maximum log-likelihood estimates of the MSEPP models proposed in section 3 for the

two markets are displayed in Table 2. The results lead to markedly favor the ACD-POT model ap-

proach. For the WTI market a gACD-POT model was estimated with AIC of 3662.91, while for the

Brent market a gLog-ACD model was estimated with AIC of 3589.47. In addition, in both cases

the time varying scale parameter leads to a better fit. Indeed, the results suggest that these models
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WTI Parameters of the conditional intensityλ (t,y | Ht) of the MSEPP Loglik AIC
Conditional intensity of the ground processλg(t | Ht) Pareto generalized densityf (y | Ht , t)

w a1 b1 δ γ k φ η ρ ξ β0 β1 β2

TE-POTe 0.215 2.449 0.022 0.050 0.612 0.161 0.286 0.616 -1842.643 3701.286
(0.160 ) (0.942) (0.007) (0.019) (0.259) (0.105 )(0.067) (0.136)

TE-POTh 0.345 0.014 0.035 0.014 0.196 0.267 0.729 -1829.61 3673.214
(0.167) (0.003) (0.006) (0.003) (0.066) (0.066) (0.124)

gACD 1.154 0.254 0.683 0.202 17.859 0.275 0.321 0.062 10.443 -1822.45 3662.91
(0.458) (0.058) (0.061) (0.160) (28.011) (0.144) (0.067) (0.052) (2.121)

gLog-ACD 0.301 0.181 0.747 0.247 11.961 0.277 0.260 0.059 11.406 -1823.35 3664.69
(0.0952) (0.033) (0.052) (0.116) (11.108) (0.0670) (0.159) (0.051) (2.328)

Brent Parameters of the conditional intensityλ (t,y | Ht) of the MSEPP Loglik AIC
Conditional intensity of the ground processλg(t | Ht) Pareto generalized densityf (y | Ht , t)

w a1 b1 δ γ k φ η ρ ξ β0 β1 β2

TE-POTe 1.892 4.187 0.040 0.008 0.132 0.267 0.227 0.662 0.196 -1800.705 3617.41
(1.132) (1.597) (0.007) (0.004) (0.081) (0.168)(0.069) (0.122) (0.662)

TE-POTh 0.381 0.041 0.037 0.012 0.172 0.220 0.771 -1795.01 3604.02
(0.151) 0.008 0.005 (0.009) (0.098) 0.074 0.113

gACD 0.9694 0.1689 0.7743 0.1513 31.9091 0.192 0.456 0.2007 6.257 -1785.96 3589.92
(0.4860) (0.045) (0.061) (0.0727) (30.506) (0.066) (0.143) (0.0694) (1.816)

gLog-ACD 0.310 0.150 0.767 0.1843 21.623 0.186 0.416 0.1911 6.976 -1785.74 3589.47
(0.114) (0.034) (0.061) (0.0972) (22.624) (0.066) (0.152) (0.0689) (2.020)

Table 2: Results of the estimation of all MSEPP models for theWTI and Brent market log-returns. Standard deviations are given in parentheses. Loglike
are the results of the maximization of the log-likelihood estimation and AIC is the Akaike Information Criterion.
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react more quickly to increasing and decreasing cluster frequency of extremes, which means that

expected duration conditional of the inter-exceedances times has an effect on the probability of

further exceedances in the near future. Theβ2 values for all ACD-POT models are statistically

significant. Interestingly, the size of the last exceedancerepresented by the coefficientβ1 is not as

important as the expectation of thei-th inter-exceedance time.

We observe further that for the gamma distribution parameters we getkγ > 1 andγ < 1 for

all ACD-POT fitted models. This means that for these models theconditional intensity is inverted

U-shaped. This sort of flexibility in the shape of the conditional intensity was already noted to be

relevant by Lunde (1999) and Zhang et al. (2001). The major difference between the TE-POT and

the ACD-POT model results is that the latter allows a nonmonotonic conditional intensities, which

is able to put a lot of probability mass on small durations butnot too much probability mass on

very small durations.

The results on the goodness of fit in-sample for the models fitted to the log-retuns are displayed

in Figures 4.1 and 4.2 for the WTI and Brent markets respectively.

Firstly, we assess the conditional GPD assumption of the marks in the models fitted. To this

end, we provide the W-statistic explained in details in AppendixB. This statistic forms an iid

sequence of exponential random variables with mean one if the marks are GPD. According to the

QQ-plots displayed in Figure 4.1 for the WTI log-returns, we do not observe a substantial deviation

from an exponential distribution in all cases. For instancethe Kolmogorov-Smirnov test gives as

result;D = 0.0338 with p-value 0.815 for the TE-POTh model,D = 0.0331 with p-value 0.826 for

the TE-POTe model,D = 0.0388 with p-value 0.649 for the gACD-POT model, andD = 0.038

with p-value 0.677. In the case of the Brent log-returns, the results are very similar though some

differences can be observed. The Kolmogorov-Smirnov test gives as result;D = 0.0329 with

p-value 0.829 for the TE-POTh model,D = 0.078 with p-value 0.023 for the TE-POTe model,

D = 0.071 with p-value 0.0506 for the gACD-POT model, andD = 0.065 with p-value 0.096. The

above results indicates that for the TE-POTe model the null hypothesis can be only accepted at the

1% significance level.

Furthermore, we would like to check that there is no further time series structure, for this

reason the autocorrelation function (ACF) for the residuals(middle panel) is also included. The

autocorrelations is negligible at nearly all lags for the WTImarket. In the case of the Brent market

we observe some differences, especially for the ACD-POT models. Examining the autocorrelation

of the residuals formally by means of the Ljung-Box statisticunder the null hypothesis that the

first teen autocorrelations are zero, we found that the null hypothesis is not only rejected for the

TE-POT models at the 5% significance level. In particular, the TE-POTh model has a chi-squared
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Figure 4.1: Goodness of fit in sample: QQ-plots of the residuals (left), autocorrelation function of the residuals
(middle) and cumulative numbers of the residual process versus the transformed time{τi} (right), for the models
applied to the log-returns of the WTI market. From top to bottom, the time event peaks over threshold model with
Hawkes kernel (TE-POTh), the time event peaks over threshold model with ETAS kernel (TE-POTe), the ACD model
for the expected conditional duration with generalized gamma distribution for the standardized residuals (gACD-
POT), and the Log-ACD model for the expected conditional duration with generalized gamma distribution for the
standardized residuals (gLog-ACD-POT).
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Figure 4.2: Goodness of fit in sample: QQ-plots of the residuals (left), autocorrelation function of the residuals
(middle) and cumulative numbers of the residual process versus the transformed time{τi} (right), for the models
applied to the log-returns of the Brent market. From top to bottom, the time event peaks over threshold model with
Hawkes kernel (TE-POTh), the time event peaks over threshold model with ETAS kernel (TE-POTe), the ACD model
for the expected conditional duration with generalized gamma distribution for the standardized residuals (gACD-
POT), and the Log-ACD model for the expected conditional duration with generalized gamma distribution for the
standardized residuals (gLog-ACD-POT).
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statistic of 7.744 and a corresponding p-value of 0.171, while the TE-POTe model, has a chi-

squared statistic of 9.861 and a corresponding p-value of 0.079. The results for the ACD-POT

model could indicate that the specification of the scaling parameter is not flexible enough to model

the marks or exceedances, since the scaling parameter specification only linearly depends on the

temporal intensity of the inter-exceedance times and the magnitude of the marks.

Finally, in order to determine the quality of the times component of our models, i.e., the con-

ditional intensity of the ground processλg, we employ the residual analysis method for point

processes resumed briefly in the AppendixB. This is based on the change of time scale using the

estimated conditional intensity. We investigated whetherthe transformed time-scale version of

the data constitutes a homogeneous Poisson process according to the residual analysis introduced

by Ogata (1988). The residual analysis for both markets indicates that all models seem to be

acceptable in the changed time scale.

From the point of view of the market risk, we calculate the VaRin-sample from the different

models for both markets, which are displayed in Figure 4.3. Taking a closer look at VaR estimates,

there are clearly key aspects that mirror the complexity of capturing the extreme event dynamics

by a model in response to an unpredictable, volatile and risky environment, as for example, the

spikes reflected in the figures when the Gulf war and the Iraq War commenced in 1990 and 2003,

respectively. A deeper analysis of the VaR will be done when we realize the backtesting of all

models. The quotation from Aaron Brown (Risk Manager) in the June/July 2008 issue of the

“Global Association of Risk Professionals” perfectly describes the importance of backtesting VaR

models: “Value-at-Risk is only as good as its backtest. When someone shows me a Value-at-Risk

number, I don’t ask how it is computed, I ask to see the backtest”.

For this reason, we include all models in the backtest in order to have a comparison of different

alternatives, not only the best one in-sample.

Backtesting the models

Backtesting provides invaluable feedback about the accuracy of the models proposed to risk

managers. The archetypal market risk model is a model that forecasts the VaR of a portfolio

or stock market over one or more confidence levels, for a specified horizon. In this paper the

backtest method consists of comparing the estimated conditional VaR for one day time horizont,

given knowledge of returns up to and includingt for three different confidence levels (0.95, 0.99,

and 0.999). For each day in the backtest we reestimate the models, something that immediately

reveals possible stability problems of a model. Then, we reestimated the risk measures for each

return series according to the equation (3.3).

In addition, we provide empirical evidence on the accuracy of actual VaR measures derived
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Figure 4.3: In-sample VaR estimates at the 0.99 confidence level for the WTI (top panel) and Brent (bottom panel) markets for their negative log-returns.
The sample period spans from 2 January 1990 to December 31, 2009. The black line is the VaR estimation. From right to left, the time event peaks over
threshold model with Hawkes kernel (TE-POTh), the time event peaks over threshold model with ETAS kernel (TE-POTe), theACD model for the expected
conditional duration with generalized gamma distributionfor the standardized residuals (gACD-POT), and the Log-ACDmodel for the expected conditional
duration with generalized gamma distribution for the standardized residuals (gLog-ACD-POT).
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from the models. The first test is an unconditional coverage (LRuc) test (Christoffersen, 1998).

The idea is to test if the fraction of violations obtained fora particular risk measure significantly

differs from the theoretical one. A violation of the VaR or Hit is defined as occurring when the

ex-post return is lower than the VaR. A second test proposed byChristoffersen (1998) is a test of

independence (LRind) among VaR violations, where under the null hypothesis, a violation today

has no influence on the probability of a violation tomorrow. The third test is a combination of

the last two tests which is known as the conditional coverage(LRcc) test. The fourth approach,

proposed by Berkowitz et al. (2009), tests for uncorrelatedness among the VaR violations. In

particular, we suggest the well-known Ljung-Box (BT) test of the violation sequence’s autocorre-

lation function. The last test, named the Dynamic Quantile (DQ) test, was introduced by Engle

and Manganelli (2004). The idea is to regress the violationson the VaR for the present period on a

judicious choice of explanatory variables. In our case, denoted by theDQhit , the regressor vector

contains one constant and lagged VaR violations. All of these measures are reviewed briefly in the

AppendixC.

Table 3 reports the results on the VaR backtesting exercise for all confidence levels. Entries

in the columns are the significance levels (p-values) of the respective tests. A p-value less than or

equal to 0.05 will be interpreted as evidence for rejecting the null hypothesis.

We observe that for all the models the results are more than satisfactory. These indicate that

no severe clustering of exceedances is present and that the VaR violations can be considered as

independent at all the confidence levels. The major difference between the TE-POT and ACD-

POT models is that the latter have the lowest average VaR (VaRα ) across all VaR levels. In other

words, ACD-POT models on average bring about the lowest capital requirement.

Overall, the assessment of our results shows that the MSEPP models are stable and reliable,

implying that this approach of modeling extreme values can be used for further application of

extreme events. Moreover, these models allow us to take the heavy-tailness or the stochastic

nature of the cluster of extreme events into consideration.

The results for the MSEPP models can be summarized as follows:

• The results in-sample lead to markedly favor the ACD-POT model approach according to the

AIC. However, the results in goodness of fit indicate that the TE-POT models performance

best. This is probably due to the specification of the scalingparameter in the ACD-POT

model. This means that the parametric specification for the scaling parameter may be not

flexible enough, because it depends linearly on the temporalintensity of the inter-exceedance

times and the magnitude of the marks.

• The quality of the conditional intensity of the ground process fit by means of residual anal-
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Models for WTI α %Viol. LRuc LRind LRcc BT DQhit VaRα

TE-POTe 0.95 19 0.71 0.27 0.51 0.21 0.29 3.33

0.99 3 0.56 0.83 0.83 0.88 0.83 5.23

0.999 1 0.44 0.94 0.74 0.96 0.83 9.91

TE-POTh 0.95 17 0.40 0.23 0.34 0.38 0.24 3.48

0.99 3 0.56 0.83 0.83 0.88 0.83 5.70

0.999 1 0.44 0.94 0.74 0.96 0.83 11.35

gACD 0.95 19 0.71 0.27 0.51 0.21 0.29 3.35

0.99 5 0.67 0.73 0.86 0.80 0.73 5.02

0.999 1 0.44 0.94 0.74 0.96 0.73 9.09

gLog-ACD 0.95 18 0.55 0.22 0.40 0.15 0.24 3.39

0.99 6 0.38 0.67 0.63 0.76 0.68 5.11

0.999 1 0.44 0.94 0.74 0.96 0.67 9.34

Models for Brent α %Viol. LRuc LRind LRcc BT DQhit VaRα

TE-POTe 0.95 13 0.07 0.36 0.12 0.51 0.37 3.48

0.99 2 0.24 0.89 0.50 0.92 0.89 5.68

0.999 1 0.44 0.94 0.74 0.96 0.89 10.46

TE-POTh 0.95 13 0.07 0.36 0.12 0.51 0.37 3.39

0.99 2 0.24 0.89 0.50 0.92 0.89 5.57

0.999 1 0.44 0.94 0.74 0.96 0.89 10.33

gACD 0.95 14 0.11 0.32 0.18 0.47 0.33 3.42

0.99 6 0.38 0.67 0.63 0.76 0.68 5.14

0.999 1 0.44 0.94 0.74 0.96 0.67 8.72

gLog-ACD 0.95 13 0.07 0.36 0.12 0.51 0.37 3.53

0.99 5 0.67 0.73 0.86 0.80 0.73 5.35

0.999 1 0.44 0.94 0.74 0.96 0.73 9.13

Table 3: Goodness of fit to assess the predictive performancein the backtest of the models under consideration for the
WTI and Brent market returns. Entries in the columns are the significance levels (p-values) of the respective tests, with
exception of the levelα and the number of violations at the VaR (%Viol.). The first test is an unconditional coverage
(LRuc) test (Christoffersen, 1998). A second test proposed by Christoffersen (1998) is a test of independence (LRind)
between violations of the VaR, where under the null hypothesis a violation today has no influence on the probability
of a violation tomorrow. The third test is a combination of the last two test which is known as the conditional coverage
(LRcc) test. The fourth approach proposed by Berkowitz et al. (2009) tests for uncorrelatedness of the violations. In
particular, we suggest the well-known Ljung-Box (BT) test of the violation sequence’s autocorrelation function. The
last test, named the Dynamic Quantile (DQ) test, was introduced by Engle and Manganelli (2004). The idea is to
regress the violations on the VaR for the present period on a judicious choice of explanatory variables. In our case,
denoted by theDQhit , the regressor vector contains one constant and lagged violations of the VaR.VaRα denotes the
average value of the VaR estimates.
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ysis method for point processes indicates that all models seem to be acceptable in the trans-

formed time-scale version of the data, which constitutes a homogeneous Poisson process.

• Major improvements in VaR predictions (backtesting) are achieved in all aspects when ac-

counting for the extreme event dynamics by means of the proposed models. In addition,

VaR violation ratios are statistically equal to the theoretical values in all cases, and VaR

violations are independent when using either the TE-POT model or the ACD-POT model,

the latter being preferred overall.

5. Conclusions

The impact of extreme events on crude oil markets is of great importance in crude oil price

analysis due to the fact that those events generally not onlyshow strong impact on crude oil

markets but also in world stock markets. Although, sometimes those extreme movements in crude

oil prices can be due to the behavior of events exogenous to the macroeconomy, as for example;

the outbreak of the 1990 Gulf War or the 2003 Iraq War.

For better estimation of the impact of extreme events on crude oil price, this study attempts to

use a marked self-exciting point process (MSEPP) approach for the task. In the proposed method,

we make use of two new classes of MSEPP models that seem particularly well suited. The idea was

to create a model being able to incorporate stylized facts such as clustering of extreme events and

autocorrelation of the inter-exceedance times of extreme events, i.e., properties that are observed

in crude oil markets. The first class of models is formulated in relation to the time of occurrence of

the extreme events. We call this class of models Time event POT (TE-POT) models and it is able

to generate power-law or exponential decay between extremeevents and short-term cluster burts.

The second class of models can be interpreted as a combination between the classical Peaks Over

Threshold (POT) model from Extreme Value Theory and the class of Autoregressive Conditional

Duration (ACD) models that are popular in finance for high-frequency data analysis. For this

reason we call it ACD-POT models.

The main conclusions that can be drawn from our empirical investigation in the WTI and Brent

oil markets can be summarized as follows. The VaR estimates under different high confidence

levels exhibit strong stability through a range of the selected thresholds, implying the accuracy

and reliability of the estimated risk measures.

Overall, the assessment of our results shows that the MSEPP models are stable and reliable,

not only in-sample results but also in the backtesting, implying that these approaches of modeling

extreme values can be used to further applications. Finally, credible regions and simulation of
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future risks could be derived, which would provide interested organizations and managers with a

valuable measure of short term uncertainty.
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AppendixA. Threshold choice for EVT

Observe that under the MSEPP method only the tail indexξ remains constant, while the scale

parameter varies through time. From the point of view of the risk measures, a robust fit to a sample

of extreme events and a good estimate of risk measures, as forexample VaR, would be relatively
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insensitive to departures from the model. This is valuable in actual financial problems where one

of the most important objectives is to obtain a robust measure of risk. However, EVT implemen-

tation faces many challenges, one of the most important being the fact that EVT is designed for

independent observations. Crude oil market returns tend to be dependent, and therefore, a standard

methodology for threshold selection does not exist.

The critical point in threshold selection is that by increasing the number of observations for

the series of maxima, some observations from the center of the distribution are introduced in the

series, and that the tail indexξ as well as the VaR estimate are more precise but biased (i.e.,there

is less variance). On the other hand, choosing a high threshold reduces the bias but also makes the

estimates more unstable.

Thus, the main objective in this section is to determine how sensitive the MSEPP framework

is to the choice of the thresholdu, and in particular the VaR estimates obtained by means of these

models. To this end, we choose the optimal threshold indirectly, by choosing an interval where

the threshold quantile seems to be more stable in relation tothe VaR estimate. To compare the

different intervals, we computed the mean squared error (MSE) pointwise of the estimators as

follows:

• We fix in advance a grid of size 10×10 of possible threshold-quantilesq (qk ∈ [0.85, . . . ,0.94]

for k = 1, . . . ,10 with, qk < qk+1 for all k ), and different confidence levelsα for the VaR

estimates (α j ∈ [0.95, . . . ,0.999] for j = 1, . . . ,10) that will be estimated through a TE-POT

or ACD-POT Model.

• We choose a quantile thresholdqk and estimate a suitable TE-POT or ACD-POT model.

Since the estimate of the VaR are time varying we compute a mean valueVaR
(

qk,α j
)

for

each VaR levelα j (the results of these estimations are displayed in Figure A.1 ).

• To compare the different estimates, we calculate the following MSE

MSEΣα (qk−qk+1) =
1
9

9

∑
j=1

(

VaR
(

qk,α j
)

−VaR
(

qk+1,α j
))2

• Finally, we choose the threshold by selecting an interval where the threshold quantile seems

to be more stable.

For example, in Figure A.1 we display theVaR
(

qk,α j
)

estimates for the analysis of threshold

selection for the proposed models. The results indicate that at least for all the returns that we have

considered, the threshold selection seems to have limited influence on the VaR estimates. In Table
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Models 100×MSEΣα (qk−qk+1) for the WTI market
qk−qk+1 0.85-0.86 0.86-0.87 0.87-0.88 0.88-0.89 0.89-0.90 0.90-0.91 0.91-0.92 0.92-0.93 0.93-0.94

TE-POTh 0.043 0.114 0.308 0.233 0.444 2.229 1.193 0.285 1.035

TE-POTe 9.467 26.885 3.109 5.109 2.332 3.806 3.494 1.399 0.416

gACD-POT 0.184 0.085 0.642 0.162 1.224 1.006 0.401 0.761 0.552

gLogACD-POT 0.403 0.770 1.638 0.179 0.421 1.438 0.318 0.528 0.605

Models 100×MSEΣα (qk−qk+1) for the Brent market
qk−qk+1 0.85-0.86 0.86-0.87 0.87-0.88 0.88-0.89 0.89-0.90 0.90-0.91 0.91-0.92 0.92-0.93 0.93-0.94

TE-POTh 0.015 0.059 0.021 0.132 0.319 0.021 0.572 0.484 0.063

TE-POTe 0.939 0.702 1.261 1.462 1.528 1.311 0.881 0.613 0.725

gACD-POT 0.268 0.122 0.002 0.535 0.505 1.047 0.973 0.691 1.214

gLogACD-POT 1.007 0.181 0.014 0.439 1.031 1.296 1.543 0.885 0.95

Table A.4:MSEα j (qk−qk+1) estimates for the threshold selection for the WTI and Brent markets.

A.4, we display the values of theMSEΣα (qk−qk+1) respect to the thresholds intervalsqk−qk+1.

We observe that most threshold dependent models are the TE-POTe model.

This table shows that a threshold between the quantiles 0.92 and 0.93 may be the most justified

for all models because of the fact that between these two quantiles the models showed a great

stability.

AppendixB. Goodness of fit in sample

Residuals Analysisresidual analysis for point process involves rescaling or thinning the original

point process in order to obtain a new point process that is homogeneous Poisson. The com-

mon element of residual analysis techniques is the construction of an approximate homoge-

neous Poisson process from the data points and an estimated conditional intensity function

λ̂g(t | Ht). Suppose we observe a one-dimensional point process{t1, . . . , tn} on [0,T) with

conditional intensityλg(t | Ht). It is well known that the points

τi =

ˆ ti

0
λg(t | Ht)ds, (B.1)

for i = 1, . . . ,N(T) constitute a homogeneous Poisson process of rate 1 on an interval

[0,N(T)] which is threfore part of a transformed time axis. This new point process is called

the residual process. If the estimated modelλ̂g(t | Ht) is close to the true conditional inten-

sity, then the residual process resulting from replacingλg(t | Ht) with λ̂g(t | Ht) in (B.1)

should closely resemble a homogeneous Poisson process of rate 1. The resulting property
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Figure A.1: The mean value of the average VaR estimatesVaR(qk,α j) for all the models for the WTI (top panel) and Brent (bottom panel) log-returns, for
each VaR confidence levelα j , (α j ∈ [0.95, . . . ,0.999] for j = 1, . . . ,10) and threshold-quantileq (qk ∈ [0.85, . . . ,0.94] for k= 1, . . . ,10 ).
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of exponentially distributed durations enables us to test for the presence of a homogeneous

Poisson process via a Kolmogorov-Smirnov test.

W-statistics In the case of the marks, we provide the W-statistics in orderto assess our success

in modeling the temporal behavior of the exceedances of the thresholdu. The W-statistic is

defined by

W = ξ−1 ln

(

1+ξ
x−u

β (t,y | Ht)

)

.

This statistic states that if the GPD parameter model is correct, then the residuals are approx-

imately independent unit exponential variables. In practice, the independence assumption

can be checked via an ACF plot of the residuals.

AppendixC. Accuracy of VaR

Test of Unconditional Coverage (LRuc): Christoffersen (1998) terms the sequence of VaR fore-

casts efficient with respect to the historyHt−1 if E [It | Ht−1] =α, whereIt = I(rt <−VaRt)

with I being the indicator function. Due to the fact thatIt | Ht−1 ∼ Ber(α), t = 1,2, . . . ,T.

Applying iterated expectations implies thatIt is uncorrelated (unconditional coverage) with

any function of a variable in the information set available.This can be tested by means of a

likelihood-ratio test

LRuc = 2[L (α̂; I1, . . . , It)−L (α; I1, . . . , It)]∼ χ2
1,

whereL is the log binomial likelihood. The maximum likelihood estimationα̂ is the ratio

of number of violations,n1, to the total number of observations,T = n0+n1.

Test of Independence (LRind):Christoffersen (1998) suggests a test of independence by model-

ing the number of violationsIt as a binary first order Markov chain with transition probability

matrix

Π =

[

1−π01 π01

1−π11 π11

]

, πi j = P(It = j | It−1 = i) ,

as the alternative hypothesis of dependence. The join likelihood, conditional on the first

observation is given by

L(π∗; I2, . . . , IT | I1) = (1−π01)
n00+n10 πn01+n11

01 ,

where ni j represents the number of transitions from statei to state j. The maximum-
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likelihood estimators under the alternative hypothesis are

π̂01 =
n01

n00+n01
and π̂11 =

n11

n10+n11
.

Under the null hypothesis of independence, we haveπ = π01 = π11, from which the condi-

tional binomial joint likelihood is defined as

L(π; I2, . . . , IT | I1) = (1−π01)
n00 πn01

01 (1−π11)
n10 πn11

11 .

Similar to the unconditional coverage test, the likelihoodratio test is given by

LRind = 2
[

L
(

π̂∗; I2, . . . , It | I1
)

−L (π̂; I2, . . . , It | I1)
]

∼ χ2
1.

Conditional Coverage (LRcc): Christoffersen (1998) suggests combining the unconditional cov-

erage test and the test of independence in order to test correct conditional coverage, because

π∗ is unconstrained. Then, we have

LRcc = LRuc+LRind ∼ χ2
2.

We can jointly test for independence and correct coverage using the conditional coverage

test.

Ljung-Box test (BT): we implement a test statistics proposed by Berkowitz et al. (2009) for the

autocorrelations of de-meaned violationsHitt (α) = It −α, which form a martingale differ-

ence sequence. This is a Ljung-Box statistic, which is a jointtest of whether or not the first

mautocorrelations ofHitt (α) are zero by calculating

LBVaR(m) = T (T +2)
m

∑
k=1

γ2
k

T −k

whereT is the sample size,γk is the sample autocorrelation at lagk andLBVaR(m) is asymp-

totically chi-square withm degrees of freedom.

Dynamic quantile test (DQhit): A relevant VaR model should also feature a sequence of VaR vio-

lations which are not serially correlated. Engle and Manganelli (2004) suggest the Dynamic

Quantile (DQ), which can jointly test the hypothesis thatE [Hitt (α)] = 0 and thatHitt (α)

is uncorrelated with the variables included in the information set, whereHitt (α) = It −α.
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Both tests can be done using the following artificial regression

Hitt = Xβ +u,







−α, with probability 1−α

1−α, with probabilityα
,

where, under the null hypothesis,H0 = β = 0, i.e, the regressors should have no explanatory

power. Considering that the regressors are not correlated with the dependent variables under

the null hypothesis, invoking a suitable central limit theorem Engle and Manganelli (2004)

deduce the test statistic

DQ=
β̂X′Xβ̂ ′

α (1−α)
∼ χ2

p+2,

wherep is the number of explanatory variablesX. In the empirical application, we use the

dynamic quantile hit (DQhit ) test, whose regressor matrixX contains a constant and one

lagged hit.
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