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Abstract

Forecasting the risk of extreme losses is an important issue in the management of financial

risk. There has been a great deal of research examining how option implied volatilities

(IV) can be used to forecast asset return volatility. However, the role of IV in the context

of predicting extreme risk has received relatively little attention. The potential benefit of

IV is considered within a range of models beginning with the traditional GARCH based

approach. Furthermore, a number of novel point process models for forecasting extreme risk

are proposed in this paper. Univariate models where IV is included as an exogenous variable

are considered along with a novel bivariate approach where extreme movements in IV are

treated as another point process. It is found that in the context of forecasting Value-at-Risk,

the bivariate models produce the most accurate forecasts across a wide range of scenarios.
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1 Introduction

Modeling and forecasting extreme losses is a crucially important issue in the management of

financial risk. As a result, accurate estimates of risk measures such as Value-at-Risk (VaR)

that capture the risk of extreme losses have attracted a great deal of research attention. For a

model to be successful in dealing with these extreme loss events it must capture their tendency

to cluster in time.

A number of approaches to deal with the clustering of events have been proposed. McNeil and

Frey (2000) develop a two stage method where GARCH models are first applied to model the

general time variation in volatility with extreme value theory (EVT) techniques then applied

to the residuals. Chavez-Demoulin et al. (2005) propose a novel Peaks Over Threshold (POT)

approach for modelling extreme events. To deal with event clustering they employ a self-exciting

marked point process, specifically a Hawkes process. Under the Hawkes specification, the in-

tensity of the occurrence of extreme events depends on the past events and their associated size

or marks. Herrera and Schipp (2013) extend the Hawkes-POT framework of Chavez-Demoulin

et al. (2005) in proposing a duration based model to capture the clustering in the extreme loss

events.

While they have not been considered in this specific context, option implied volatilities (IV)

have been widely used in terms of forecasting volatility. As the volatility of the returns on

the underlying asset price is an input into option pricing models, an expectation (risk neutral)

of volatility is required before valuing options. While IV is a risk neutral estimate, it is well

known that IV indices are negatively correlated with the level of stock market indices and are

an important measure of short-term expected risk (see, Bekaert and Wu, 2000; Wagner and

Szimayer, 2004; Giot, 2005; Becker et al., 2009; Lin and Chang, 2010; Bekaert and Hoerova,

2014, among others), and have been found to be a useful forecast of physical spot volatility

in many studies, see Poon and Granger (2003). Blair et al. (2001) find the inclusion of IV as

an exogenous variable in GARCH models to be beneficial in terms of forecasting. While not

focusing on forecasting, Becker et al. (2009) show that IV contains useful information about

future jump activity in returns, which is likely to reflect extreme movements in prices.

Very few studies have focused on the complex extremal dependence between IV and equity

returns. Aboura and Wagner (2014) investigate the asymmetric relationship between daily S&P

500 index returns and VIX index changes revealing the existence of a contemporaneous volatility-

return tail dependence for negative extreme events though not for positive returns. Peng and Ng

(2012) analyse the cross-market dependence between five of the most important equity markets

and their corresponding volatility indices, finding evidence of asymmetric tail dependence. Hilal
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et al. (2011) propose a conditional approach for capturing extremal dependence between daily

returns on VIX futures and the S&P500. Their empirical analysis shows that VIX futures

returns are very sensitive to stock market downside risk.

In this paper, the analysis moves beyond the role of IV in forecasting total volatility to focus

on the link to extreme losses and addresses two main questions.

1. How are extreme shocks in an IV index and extreme events in its respective stock market

return related?

2. Can this relationship be harnessed to provide superior forecasts of extreme returns?

To address these issues, an approach is proposed which utilises IV within intensity based point

process models for extreme returns. The first model treats IV as an exogenous variable influ-

encing the intensity and the size distribution of extreme events. A novel alternative view is

also proposed based on a bivariate Hawkes model. Extreme movements in IV are treated as

events themselves, with their impact on extreme events in equity returns captured through a

bivariate Hawkes model. Performance of the proposed methods will be analysed in the context

of forecasting extreme losses within a Value-at-Risk framework. The benchmark approach fol-

lows both the earlier forecasting literature in that IV is used as an exogenous variable within

the GARCH-EVT framework and the bad environments, good environment (BEGE) model of

Bekaert and Engstrom (2015).

An empirical analysis is undertaken where forecasts of the risk of extreme returns are generated

for five major equity market indices using their associated IV indices. These forecasts are based

on GARCH-EVT, BEGE, univariate and bivariate Hawkes models, and take the form of VaR

estimates at a range of levels of significance. It is found that GARCH based forecasts which

include IV are often inaccurate. Univariate Hawkes and BEGE models where IV is treated as an

exogenous variable outperform the GARCH forecasts, though their forecasts do fail a number

of tests for VaR adequacy. The bivariate Hawkes models where the timing of past extreme

increases in IV are treated as a point process lead to the most accurate forecasts of extreme

risk in the widest set of scenarios. The results of this paper show that while IV is certainly of

benefit for forecasting extreme risk in equity returns, the framework within which it is used is

important. The superior approach is to treat extreme increases in IV as a point process within

a bivariate model for extreme returns.

The paper proceeds as follows. Section 2 outlines the traditional GARCH-EVT framework,

the BEGE model, and introduces the proposed univariate and bivariate Hawkes point process

models. Section 3 describes how VaR forecasts are generated and evaluated. Section 3.1 outlines

the equity market and associated IV indices. Section 4 presents in-sample estimation results
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for the full range of models considered along with the results from tests of forecast accuracy.

Section 5 provides concluding comments.

2 Methodology

This section introduces the competing approaches for forecasting extreme losses in the context

of VaR predictions. The first is based on the classic GARCH approach where IV is used as

an exogenous variable. The specifications considered here are the standard GARCH model

of Bollerslev (1986), the GJR-GARCH models of Glosten et al. (1993), and the exponential

GARCH (EGARCH) of Nelson (1991). The next approach considered is the BEGE (Bad envi-

ronment good environment) model of Bekaert and Engstrom (2015) which offers a flexible con-

ditional distribution to describe returns. The approach proposed here utilizes the Hawkes-POT

framework introduced in the one-dimensional case by Chavez-Demoulin et al. (2005) which has

been employed in a range of empirical applications from modeling equity risk to extreme spikes

in electricity prices (Chavez-Demoulin and McGill, 2012; Herrera, 2013; Herrera and Gonzalez,

2014). Here, the one-dimensional approach is extended to include IV as an exogenous variable.

A novel bivariate model is also developed to incorporate the intensity of the occurrence of ex-

treme movements in IV. This approach will uncover potential bi-directional linkages between

extreme movements in IV and extreme losses. Results from this analysis will reveal whether

using IV itself, or the intensity of its extreme movements lead to more precise prediction of the

intensity and size of extreme equity market losses.

2.1 Conditional mean and volatility models

The conditional mean of the equity market returns is specified as an Auto Regressive Moving

Average (ARMA) process

rt = µ+
m∑

i=1

airt−i +
n∑

j=1

bjεt−j + εt. (1)

Where rt denotes the return on a stock market index at time t, µ a constant, ai and bj describe

the autoregressive and moving average coefficients, respectively and εt denotes the residual term.

The residuals are defined by

εt = ηt
√
ht, ηt ∼ iid(0, 1), (2)

where ηt is the standardized residual and ht is the conditional variance. The GARCH spec-

ifications considered for the conditional variances which include IV as an exogenous variable
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are

GARCH(1,1) : ht = ω + αε2t−1 + βht−1 + γIVt−1 (3)

GJR-GARCH(1,1) : ht = ω + αε2t−1 + δmax (0,−εt−1)
2 + βht−1 + γIVt−1 (4)

EGARCH(1,1) : lnht = ω + αεt−1 + δ(|εt−1| − E |εt−1|) + β lnht−1 + γ ln IVt−1. (5)

The GARCH model in (3) corresponds to the standard model of Bollerslev (1986), with ω > 0,

α ≥ 0, β ≥ 0 and γ ≥ 0 so that the conditional variance ht > 0. The model is stationary

if |α+ β| < 1 is ensured. The GJR-GARCH specification (4) allows the conditional variance

to respond asymmetrically to the sign of past returns by means of the parameter δ. Sufficient

conditions for ht > 0 are ω > 0, α+δ ≥ 0, β ≥ 0 and γ ≥ 0. Finally, the EGARCH specification

(5), allows for asymmetries in volatility if α 6= 0 while leverage exists if α < 0 and α < δ < −α.
To be consistent with the specification of the conditional variance in (5) we also include the

IV index in a logarithmic form. These three conditional volatility specifications are estimated

assuming a Skew Student-t distribution. 1

The BEGE model of Bekaert and Engstrom (2015) describes the innovations in returns,

εt = σpωp,t − σnωn,t, where

ωp,t ∼ Γ̃(pt, 1), and

ωn,t ∼ Γ̃(nt, 1) (6)

which is a linear combination of two component shocks, where Γ̃(k, θ) is a centred gamma

distribution with shape and scale parameters, k and θ respectively. The two gamma distributions

are assumed to have a constant scale, though time-varying shape parameters, pt and nt for the

good and bad environments respectively. The shape parameters evolve according to a GJR-

GARCH like structure

pt = p0 + ρppt−1 +
σ+p
2σ2p

ε2t Iεt−1≥0 +
σ−p
2σ2p

(1− Iεt−1≥0),

nt = n0 + ρnnt−1 +
σ+N
2σ2n

ε2t Iεt−1≥0 +
σ−n
2σ2n

(1− Iεt−1≥0). (7)

A version of this model that includes lagged IV as an exogenous variable, with a common

coefficient in both positive and negative components (denoted below as BEGE+IV) is also

estimated.

1In a preliminary version of the paper both a conditional Normal, and symmetric student t distribution were
also considered. However assuming a skewed student t conditional distribution provides a superior fit to the data.
Here the skewness is incorporated into the t-distribution using the method of Fernandez and Steel (1998).
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2.2 Conditional intensity models

Marked point processes (MPP) are stochastic processes that couple the temporal clustering

arrival times observed in extreme events, with a set of random variables, the so-called marks

associated with each event. In EVT, for example, the interest lies in the intensity of extreme

event occurrences as well as the distribution of the exceedances over a pre-determined large

or extreme threshold. This paper develops two approaches for investigating the role of IV in

explaining the intensity and size of extreme loss events. In doing so, the nature of the extreme

loss-IV relationship will be revealed.

2.2.1 Univariate Hawkes-POT model

The first point process approach is based on a univariate MPP, specifically the Hawkes-POT

model introduced by Chavez-Demoulin et al. (2005) and applied by Chavez-Demoulin and

McGill (2012). Here, the Hawkes-POT model is generalised by using the IV index as a co-

variate in the conditional intensity process for extreme loss events.

In this context, let {(Xt, Yt)}t≥1 be a vector of random variables that represent the log-returns of

a stock market index and the associated IV derived from options on that index. For ease of sub-

sequent notation, assume returns are multiplied by −1. To determine the conditional intensity

of extreme losses, return events whose size exceeds a pre-defined high threshold u > 0 are the fo-

cus. This will define a finite subset of observations {(ti, wi, zi)}i≥1, where ti ∈ R corresponds to

occurrence times, wi ∈ R+ the magnitude of exceedances (the marks), and zi ∈ R+ a covariate

based on the IV index, with wi := Xti −u, and zi := Yti . A general MPP N (t) is proposed satis-

fying the usual conditions of right-continuity N (t) := N (0, t] =
∑

i≥1 1 {ti ≤ t, wi = w, zi = z}
with past history or natural filtration Ht = {(ti, wi, zi) ∀i : ti < t} that includes times, marks

and the covariates. According to the standard definition of a MPP, it may be characterized by

means of its conditional intensity function

λ (t, w | Ht) = λg (t | Ht) g (w | Ht, t) , (8)

which, broadly speaking describes the probability of observing a new event in the next instant

of time conditional on the history of the process.

There are two components to the intensity of the MPP, a ground processNg (t) :=
∑

i≥1 1 {ti ≤ t}
with conditional intensity λg (t | Ht) which characterizes the rate of the extreme events over

time, and the process for the marks, whose density function g (w | Ht, t) is conditional on the

history of the process and time t. Observe that the covariate zi does not directly enter into

the definition of the conditional intensity in equation (8) even though it appears to be another
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mark in addition to wi contained in the available information set, Ht. Instead, the covariate

zi provides extra information to explain the behaviour of the process without being directly

involved in the determination of likelihood in this stochastic process.

The conditional intensity λg (t | Ht) is characterized by the branching structure of a Hawkes

process with an exponential decay function

λg (t | Ht) = ν + ϑ
∑

i:ti<t

eψwi+ρziφe−φ(t−ti), (9)

where ν ≥ 0 is the background intensity that accounts for the intensity of exogenous events

independent of the internal history Ht, the branching coefficient ϑ ≥ 0 describes the frequency

with which new extreme events arrive, the parameter ψ ∈ R and ρ ∈ R determine the con-

tribution of the mark wi and covariate zi to the conditional intensity of the ground process,

and φ > 0 is a decay parameter. The exponential functions inside the sum define the impact

f(w, z) = eψw+ρz, and kernel decay function h (t− ti) = φe−φ(t−ti) that controls how offspring

are generated by first order extreme events which represents the main source of clustering in

the model. This process is described as self-exciting as the occurrence times and marks of past

extreme events may make the occurrence of future extreme events more probable through the

dependance on the history, Ht.

To estimate risk measures such as VaR, an assumption regarding the probability distribution

function of the most extreme return events, wi conditional on the event that Xti exceeds the

threshold u > 0 must be made. Motivated by the Pickands–Balkema–de Haan’s theorem, 2 the

extreme losses are assumed to follow a conditional Generalized Pareto Distribution (GPD) with

density function given by

g (w | Ht, t) =





1
κ(w|Ht,t)

(
1 + ξ w

κ(w|Ht,t)

)−1/ξ−1
, ξ 6= 0

1
κ(w|Ht,t)

exp
(
− w
κ(w|Ht,t)

)
, ξ = 0,

, (10)

where ξ is the shape parameter and κ (w | Ht, t) is a scale parameter specified as a self-exciting

function of the arrival times of new extreme events and their sizes

κ (w | Ht, t) = κ0 + κ1
∑

i:ti<t

eψwi+ρziφe−φ(t−ti).

Under this specification, κ0 ≥ 0 represents the baseline level for the scale, while κ1 ≥ 0 is an

impact parameter related to the influence of new extreme event arrivals. The shape parameter is

assumed to be constant through time due to the sparsity of events in the tail of the distribution

which makes estimation of time-varying scale challenging (as evident in Chavez-Demoulin et al.,

2See Pickands (1975) and Balkema and De Haan (1974).
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2005; Santos and Alves, 2012; Herrera, 2013).

The log-likelihood for the univariate Hawkes-POT model given a set of events {(ti, wi, zi)}N(t)
i=1 observed

in the space (0, T ]× [u,∞) is obtained combining the conditional intensity (8) and the density

of the marks (10) as follows

ℓ =

N(T )∑

i=1

lnλg (ti | Hti)−
� T

0
λg (s | Hs) ds+

N(T )∑

i=1

ln g (wi | Hti , ti) (11)

=

N(T )∑

i=1

ln


ν + ϑ

∑

i:ti<T

eψwi+ρziφe−φ(T−ti)


−



νT + ϑ

∑

i:ti<T

eψwi+ρzi
(
1− e−φ(T−ti)

)




−


(1/ξ + 1)

N(T )∑

i=1

{lnκ (wi | Hti , ti) + ln (1 + ξwi/κ (wi | Hti , ti))}




assuming for ease of the exposition that ξ 6= 0. The resulting estimates are consistent, asymp-

totically normal and efficient, with standard errors obtained via the Fisher information matrix

(Ogata, 1978).

2.2.2 Bivariate Hawkes-POT model

The novel bivariate approach proposed here moves beyond simply including IV as an exogenous

covariate. Extreme increases in IV are treated as a second MPP and represent the second

dimension in a bivariate model in addition to the extreme stock market losses. In this bivariate

model, the marks can influence the evolution of its respective ground process and vice versa,

offering a framework to examine the impact of IV events on extreme stock market losses.

The bivariate MPP is defined as a vector of point processes N (t) : {N1 (t) , N2 (t)}, where the

first point process N1 (t) is defined through the pairs
{(
t1i , wi

)}
i≥1

; the subset of extreme events

in the negative log-returns of the stock market occurring at time t1i over a high threshold u1 > 0,

with wi := Xt1i
− u1. Similarly, the second point process N2 (t) is defined by the pairs of events

{(
t2i , zi

)}
i≥1

with zi := Yt2
i
−u2, which also characterizes the subset of extreme events occurring

in IV at time t2i over a high threshold u2 > 0. Ht =
{(
t1i , wi

)
,
(
t2j , zj

)
∀i, j : t1i < t ∧ t2j < t

}

denotes the combined history over all times and marks. This bivariate MPP includes a bivariate

ground process Ng
k (t) :=

∑
i≥1 1

{
tki ≤ t

}
with conditional intensities

λ1g (t | Ht) = ν1 + ϑ11
∑

i:t1i<t

eψ1wiφ1e
−φ1(t−t1i ) + ϑ12

∑

i:t2i<t

eρ1ziφ2e
−φ2(t−t2i ) (12)

λ2g (t | Ht) = ν2 + ϑ21
∑

i:t1i<t

eψ2wiφ1e
−φ1(t−t1i ) + ϑ22

∑

i:t2i<t

eρ2ziφ2e
−φ2(t−t2i )
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where νk ≥ 0 are the background intensities, the branching coefficients ϑjk ≥ 0 describe the

influence that dimension k will have on dimension j, the parameters ψk ≥ 0 and ρk ≥ 0

determine the contribution of the size of the extremes occurring at the returns and IV to the

conditional intensity of the ground process, and φk > 0 are again the decay parameters. Thus,

the impact functions fk(w) = eψkw and fk(z) = eρkz, and the exponential decay kernel function

hk
(
t− tki

)
= φke

−φk(t−tki ) account for mutual and cross excitation.

A key feature of the proposed bivariate MPP is that it only includes a true mark for the point

process of the stock market returns, with the distribution of the marks for the IV events always

set to unity, g (z | Ht, t) = 1 implying the conditional intensity for these events is

λ2 (t, z | Ht) = λ2g (t | Ht) . (13)

This assumption is maintained as the focus is on estimating measures of risk for the stock market

returns given the behavior of IV at extreme levels (i.e., conditional intensity, occurrence times

and size of extreme events in IV). To achieve this it is not necessary to model the distribution

of the extreme IV events thus reducing possible estimation error.

Similar to the univariate MPP, a generalized Pareto density for the stock market returns as in

(10), is used again but with conditional scale parameter

κ (w | Ht, t) = κ0 + κ1
∑

i:t1i<t

eψ1wiφ1e
−φ1(t−t1i ) + κ12

∑

i:t2i<t

eρ1ziφ2e
−φ2(t−t2i ). (14)

Under this specification κ12 ≥ 0 is an impact parameter related to the influence of the arrival

times and size of extreme events occurring in the IV index.

Given the occurrence of pairs of observations
{(
t1i , wi

)}N1(T )

i=1
and

{(
t2i , zi

)}N2(t)

i=1
in a set (0, T ]×

[u1,∞) and (0, T ] × [u2,∞) respectively, the log-likelihood for this bivariate point process is

obtained linking the bivariate conditional intensity for the ground process (12) and the density

for the marks of the stock market returns (10) with scale parameter defined by (14).
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ℓ =
2∑

k=1





Nk(T )∑

i=1

lnλkg

(
tki | Htki

)
−
� T

0
λkg (s | Hs) ds



+

N1(T )∑

i=1

ln g
(
Ht1i

, t1i

)
(15)

=
2∑

k=1

Nk(T )∑

i=1

ln


νk + ϑk1

∑

j:t1j<t
k
i

eψkwjφ1e
−φ1(tki −t1j) + ϑk2

∑

j:t2j<t
k
i

eρkzjφ2e
−φ2(tki −t2j)




−




(ν1 + ν2)T +

2∑

k=1




ϑk1

∑

j:t1j<T

eψkwj

(
1− e−φk(T−t

1
j)
)
+ ϑk2

∑

j:t2j<T

eρkzj
(
1− e−φ2(T−t

2
j)
)








−


(1/ξ + 1)

N1(T )∑

i=1

{
lnκ

(
wi | Ht1i

, t1i

)
+ ln

(
1 + ξwi/κ

(
Ht1i

, t1i

))}

 ,

assuming once again for ease of the exposition that ξ 6= 0.

Following Embrechts et al. (2011), in the following preposition we state some weak conditions

to determine the existence of a Hawkes-POT process with stationary increments and asymptot-

ically stationary conditional ground intensity.

Preposition 1. (Stationarity) The conditional ground intensities defined in (9) and (12) are

asymptotically stationary under the following stability conditions

� Univariate model: Define h (s) := φe−φ(s) and f(w, z) := eψw+ρz as the decay kernel

and impact function, respectively. Then, given that the decay kernel function satisfies
�∞
0 h (s) ds = 1, and the expectation of impact function exists E [f(w, z)] = µwz, the

univariate model defined in (9) is asympotically stationary, if and only if,

0 < ϑµwz < 1.

� Bivariate model: Define hk (s) := φke
−φk(s) as the decay function satisfying

�∞
0 hk (s) ds =

1 for k = 1, 2, and fk(w) := eψkw and fk(z) := eρkz as the impact functions of the marks

and covariates with expectations given by E [fk(w)] = µkw and E [fk(z)] = µkz , respectively.

In addition, denoting M :=
{(
µkw, µ

k
z

)
: k ∈ {1, 2}

}
and Q := {ϑjk : j, k ∈ {1, 2}} the

(2 × 2) as the matrix representations of the expectations and branching coefficients. The

bivariate model defined in (12) is asympotically stationary, if and only if, the spectral

radius of the matrix M ◦Q is less than one, i.e.,

Spr (M ◦Q) := max {|ϕ| : det (M ◦Q− ϕ12) = 0} < 1,

where 12 is the (2 × 2) identity matrix, ϕ are the eigen values of M ◦ Q, and ◦ denotes

the Hadamard product.
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Proof. Given in Appendix A

3 Generating and evaluating forecasts conditional risk measures

The accuracy of the forecasts of extreme events will be analysed in the context of conditional

risk measures. How these risk measures are generated from the various approaches will now be

described. V aRtα is the VaR computed at day t− 1 for the negative log-return Xt as follows

1− α = P
(
Xt > V aRtα | Ht

)
,

where the equality above assumes a continuous distribution for Xt. Most financial return

series exhibit stochastic volatility, autocorrelation, and fat-tailed distributions limiting the direct

estimation of the VaR. For this reason, under the traditional benchmark approach the first stage

consists of filtering the returns series with a ARMA-GARCH process such that the residuals

are closer to iid. Given the assumed dynamics for the conditional mean of returns in (1), and

the conditional volatility proposed in (2) the following model for the returns is obtained

Xt = µ+

m∑

i=1

aiXt−i +

n∑

j=1

bjεt−j + εt, (16)

where εt = ηt
√
ht and ht is the stochastic conditional variance, ht ∈ Ht. The autoregressive

specifications for the conditional variances including the GARCH, GJR-GARCH and EGARCH

are shown in (3), (4) and (5), respectively. In the second stage, the corresponding VaR

at the α confidence level of the assumed distribution of the residuals ηt , i.e., V aRα(ηt) :

inf {x ∈ R : P (ηt > x) ≤ 1− α} is used to obtain estimates for the conditional VaR for the re-

turns. Observe that ηt are iid, and therefore V aRα(ηt) = V aRα(ηt−1) = · · · = V aRα(ηt−j) =:

V aRα(η), implying that (16) can be rewritten as follows

V aRtα = µt−1 + V aRα(η)σt−1,

where µt−1 = µ+
∑m

i=1 aiXt−i +
∑n

j=1 bjεt−j and σt−1 =
√
ht. Note that the history Ht in this

type of model is generated in a discrete time framework, contrary to the filtration generated by

the point process approach where time is continuous. Therefore all information relating to the

stochastic process prior (but not at) to time t can be included.

VaR forecasts from the BEGE models are obtained by numerically inverting the BEGE cumu-

lative distribution (used to numerically evaluate the probability distribution function and hence

the likelihood) function at the required α confidence level, given forecasts of pt and nt. By doing

so, this takes into account not only the conditional variance, but also the higher moments of
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the distribution when generating the VaR forecast.

The two (univariate and multivariate) Hawkes-POT models described in Section 2.2 can also be

directly used to estimate VaR. The advantage of this approach is that it avoids the filtering of

returns and the use of EVT. Observe that the conditional probability that the next daily return

Xt will exceed the threshold u > 0 given that Xt−1 has already exceeded this threshold is given

by

P (Xt > u | Ht) = 1− P {N ([t− 1, t) = 0 | Ht)}

= 1− exp

(
−
� t

t−1
λg (s | Hs) ds

)
,

≈ λg (t | Ht) . (17)

On the other hand, the conditional probability of this event, given that the high threshold u > 0

has been exceeded, exceeds an even higher threshold (u+x) > 0 is modeled using a generalized

Pareto distribution

P (Xt − u > x | Xt > u,Ht) = G (x− u | Ht, t) , (18)

where G (x− u | Ht, t) corresponds to the survival function of the cumulative distribution func-

tion of (10). One can demonstrate that for Hawkes-POT models, the probability that the next

daily return Xt will exceed the VaR at the α confidence level is a solution to the equation

P
(
Xt > VaRtα | Ht

)
= 1− α, or alternatively,

P
(
Xt > VaRtα | Ht

)
= P (Xt > u | Ht)P

(
Xt − u > VaRtα − u | Xt > u,Ht

)
. (19)

Thus, given the conditional intensity for the ground process (17) and the distribution for the

marks (18), a solution to (19) leads to a prediction of the VaR in the next instant at the α

confidence level

VaRtα = u+
κ (w | Ht)

ξ

{(
λg(t | Ht)

1− α

)ξ
− 1

}
. (20)

Depending on the approach, univariate or bivariate, the ground conditional intensity in (20) is

replaced with either (9) or (12). The same occurs for the scale parameter.

To assess the accuracy of the competing approaches for predicting VaR at different confidence

levels, the following set of statistical tests, based on both long-standing and quite new approaches

are employed. For further details relating to these test see Christoffersen (1998); Engle and

Manganelli (2004); Ziggel et al. (2014). Let {It (α)}nt=1 be a vector of ex-post indicator variables
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of VaR exceptions taking the value 1 if Xt > V aRtα and 0 if Xt ≤ V aRtα at time t at the VaR

coverage probability α. In addition, define the variable Hitt (α) = It (α)− α as the de-meaned

hits of exceptions.

The first test is the unconditional coverage test (LRuc) introduced by Kupiec (1995). In short,

this test is concerned with whether or not the reported VaR exceptions occur more (or less)

frequently than α × 100% of the time. The second test examines the independence of these

exceptions (LRind) using a Markov test. The third test is the conditional coverage test (LRcc),

which is a combination of the previous two tests. The key point of this test is that an accurate

VaR measure must exhibit both the independence and unconditional coverage properties. The

next two tests are the regression based Dynamic Quantile tests introduced by Engle and Man-

ganelli (2004), where the regressors are the lagged Hitt in the Dynamic Quantile Hit (DQhit)

test, whereas the Dynamic Quantile VaR (DQV aR) also includes past VaR estimates as an

explanatory variable.

Recently, Ziggel et al. (2014) proposed a new set of tests that, beside testing the uncondi-

tional coverage and independence of VaR exceptions, importantly they also test that exceptions

are identically distributed. Another advantage of these new tests is that all critical values for

these tests are distribution free and can be obtained utilizing Monte Carlo simulations, al-

lowing one- and two-tailed tests. Under this framework, the null hypothesis of unconditional

coverage test is satisfied if the expectation of VaR exceptions is equal on average to α, i.e.,

H0 : E
[
1
n

∑n
t=1 It (α)

]
= α. They propose the statistic:

MCuc =

n∑

t=1

It (α) + ǫ, (21)

where ǫ is a continuous random variable with a small variance designed to help to break ties

between test values.

To test for iid VaR exceptions, Ziggel et al. (2014) utilizes the fact that waiting times between

VaR exceptions should be geometrically distributed. In particular, they propose to test the

null hypothesis H0 : E [ti − ti−1] =
1
α , by looking at the squared waiting times between VaR

exceptions, which are better suited to detect exceptions which occur in clusters:

MCiid,m = t21 + (n− tm)
2 +

m∑

i=2

(ti − ti−1)
2 + ǫ, (22)

where m is the sum of observed VaR exceptions and t1, . . . , tm describe the occurrence times of

VaR exceptions. Note, that the value of this statistic increases as the waiting times exhibit a

greater degree of correlation among them. Thus, this test is very useful for detecting clustering

among the VaR exceptions implying a poor prediction.
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The final test corresponds to a conditional coverage tests whose specification is given by:

MCcc,m = a · f (MCuc) + (1− a) · g (MCiid,m) , 0 ≤ a ≤ 1, (23)

where f (MCuc) =
∣∣∣MCuc/n−p

p

∣∣∣ and g (MCiid,m) =
MCiid,m−r̂

r̂ 1{MCiid,m≥r̂} measure the differ-

ence between the expected and observed proportions of VaR exceptions, and sum of squared

waiting times, respectively. The parameter a is a weighting factor that can be chosen according

to an individuals preference toward the importance of either the iid property or the correct

unconditional coverage of the exceptions. In the subsequent empirical analysis, the importance

of both properties are treated equal, and only results for a = 0.5 are presented. In the last term,

r̂ denotes an estimator of the expected value of the statistic MCiid,m under the null hypothesis.

All critical values of these tests statistic are obtained utilizing 10,000 Monte Carlo simulations

of the finite sample null distribution.

To ensure that the test statistics follow a continuous distribution, a continuous random variable

with an arbitrarily small variance, ǫ ∼ N(0, 1e−6) is used in all applications3. For further details

on the last three tests see Ziggel et al. (2014).

Backtesting considers whether each individual model produces VaR forecasts that are adequate

in their own right and satisfy the coverage, independence properties. While this is important,

these tests do not allow conclusions to be drawn on which model produces the most accurate

VaR forecast. First, to directly measure forecast accuracy, the asymmetric quantile loss function

ℓ
(
Xt, V aR

t
α

)
= (It (α)− α)

(
Xt − V aRtα

)
(24)

proposed by González-Rivera et al. (2004) is used. It (α) is again the indicator function taking

the value 1 when an exception occurs at α significance and 0 otherwise. The motivation behind

this loss function is very intuitive in the context of risk management since VaR exceptions are

penalised more heavily. Such a loss function would underly a fairly broad class of economic

applications involving capital allocation in response to risk forecasts.

Given the quantile loss function in equation 24, significant differences in VaR forecast perfor-

mance will be assessed using the Model Confidence Set (MCS) introduced by Hansen et al.

(2011). The MCS approach avoids the specification of a benchmark model, and starts with a

full set of candidate models M0 = {1, ...,m0}. All loss differentials, dij,t, using equation 24,

between models i and j are computed and the null hypothesis, H0 : E(dij,t) = 0 is tested for

each pair. If H0 is rejected at the significance level αM , the worst performing model is removed

and the process continues until non-rejection occurs with the set of surviving models being the

3According to Ziggel et al. (2014) the finite sample accuracy of the test statistics are not greatly affected by
the choice of a continuous probability distribution function for ǫ, provided that its variance is small.
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MCS, M̂∗
αM

. If a fixed significance level αM is used at each step, M̂∗
αM

contains the best model

from M0 with (1−αM ) confidence. The null hypothesis is tested by means of the range statistic

for combining individual t-statistics from the pairwise comparison of forecasts. An estimate of

the asymptotic variance of the pairwise loss differentials is obtained from a bootstrap proce-

dure described in Hansen et al. (2003). Reported p-values are corrected to ensure consistency

through the iterative testing framework. See Hansen et al. (2003) and Hansen et al. (2011) for

more detail. In all subsequent empirical results, a level of 95% confidence will be used in the

MCS analysis.

The estimation of VaR for horizons longer than one day is an important issue in determining

financial risk. However, the extension of the Hawkes-POT model from a single prediction

period to a longer horizon is not a trivial exercise. This is due to the dynamic specification

of how extreme events occur over time, based on point process theory where the intensity is

characterized by means of a stochastic counting process. As a final measure of the performance

of the bivariate point process models, a simple attempt is made to obtain multi-period VaR

estimates and examine whether they satisfy the standard tests discussed earlier. This is achieved

by scaling the one period VaR by a factor hξ̂u

V aRtα ≈ hξ̂uV aRt+hα

where h is the horizon time and ξ̂u is the unconditional shape parameter obtained from the

raw log-returns. The approach used here is based on EVT suggesting that the estimation of

long-term VaR is actually possible for fat tailed distributions (see Danielsson and De Vries,

2000; Cotter, 2007, for empirical applications of this approach). The major advantage of this

simple approach, is that besides the estimation of the unconditional shape parameter ξ̂u, there

is not need to re-estimate any additional parameters. Although VaR accuracy for multi-periods

is complicated by the fact that the VaR exceptions are intrinsically autocorrelated, the uncondi-

tional coverage test (LRuc) for a horizon period of 5 and 10 days accounting autocorrelation in

the test. Given the overlapping nature of the multi-period forecasts none of the more complex

tests are undertaken.

3.1 Data

The data consists of daily returns for the S&P 500, Nasdaq, DAX 30, Dow Jones and Nikkei

stock market indices, and their respective IV indices, VIX, VXN, VDAX, VXD, and VXJ.

As the focus is on extreme increases in IV, events will be defined on daily log-changes in IV,

△IVt = ln (IVt/IVt−1) for each market. All data series used here are obtained from Bloomberg.

For each pair of stock market index and IV, the longest sample of data available is collected (S&P
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S&P 500 VIX DAX 30 VDAX Dow Jones VXD Nikkei VXJ Nasdaq VXN

mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sd 0.01 0.03 0.01 0.05 0.01 0.06 0.02 0.06 0.02 0.05
min -0.09 -0.15 -0.09 -0.27 -0.08 -0.33 -0.12 -0.42 -0.10 -0.31
max 0.11 0.22 0.11 0.31 0.11 0.53 0.13 0.58 0.11 0.36

skewness -0.24 0.65 -0.10 0.68 -0.08 0.64 -0.32 1.45 -0.07 0.57
kurtosis 11.65 7.31 7.40 6.81 9.97 7.05 9.11 16.08 7.41 6.74

Ljung-Box 42.26* 109.82* 24.51* 37.77* 39.74* 59.09* 9.43*** 31.01* 18.71* 31.41*
Jarque Bera 18916.57* 5118.41* 4292.14* 3637.99* 7639.51* 2837.02* 5806.37* 27554.81* 2632.06 2070.05*
ADF test -18.20* -19.81* -16.94* -17.83* -15.31* -16.49* -15.38* -15.97* -14.54 -16.80*
Start of

sample period
02/01/99 02/01/92 02/01/98 05/01/98 01/01/00

Extreme
events

606 533 379 370 326

Comovements 340 308 201 197 160

Table 1: Descriptive statistics for the daily stock market returns and IV log-changes. The
Ljung-Box statistics are significant for a lag of 5 trading days. *, **, *** represent significance
at 1%, 5% and 10% levels, respectively. All the samples end in December 31, 2013.

500: 02/01/90, DAX: 02/01/92, Dow Jones: 02/1/98, Nikkei: 05/01/98, Nasdaq: 01/01/00),

with all series ending December 31, 2013. The period ending 30 December 2011 is used for

estimation while 2012-2013 is used for backtesting.

The VIX index was the first widely published IV index upon which trading was developed. IV

for other U.S. indices (VXN and VXD) and both the European (VDAX) and Japanese markets

(VXJ) all follow the same principle as the VIX. The VIX index was developed by the Chicago

Board of Options Exchange from S&P 500 index options to be a general measure of the market’s

estimate of average S&P 500 volatility over the subsequent 22 trading days. It is derived from

out-of-the-money put and call options that have maturities close to the fixed target of 22 trading

days. For technical details relating to the construction of the V IX index, see CBOE (2003).

Descriptive statistics for each series is given in Table 1. It is clear that for all markets, the

sample standard deviation of changes in IV are much larger than the corresponding equity

index returns. All series exhibit high levels of kurtosis, stock market returns are negatively

skewed and changes in IV are positively skewed. Indeed, none of the series analysed is normally

distributed based on the Jarque-Bera statistic. The Ljung-Box statistics reject the null of no

autocorrelation at a lag of 5 trading days for all series. Augmented Dickey–Fuller tests for the

presence of unit roots show that all time series are stationary at 1% significance level.

Extreme movements in stock market returns or changes in IV are events for which the probability

is small. Here, an extreme event is defined as one that belongs to the 10% of the most negative

returns in stock markets, or to the 10% of the most positive log-changes in IV. Table 1 reports

the number of extreme events occurring in stock market returns and IV indices, independently

and simultaneously. Of these, between 49% and 57% of the extreme events are joint events where

extreme movements in equity returns and IV occur simultaneously, reflected in the comovements

reported in the bottom row.
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Figure 1 gives an overview of the comovement at extreme levels in stock market returns and

IV. The plots in the left column show the market returns and IV indices, with bars under the

IV indicating the occurrence of the most negative extreme returns given the occurrence of a

positive extreme change in IV. In a similar fashion to volatility itself, these extreme events tend

to cluster through time. The centre column of plots shows the relationship between changes in

IV and stock market returns. Overall, there is a clear negative relationship between the two

series. reflecting the commonly observed asymmetry in the equity return-volatility relationship.

The occurrence of extreme events, negative market returns and positive changes in IV, which

are of central interest here are represented by the black dots.

An alternative approach for measuring extremal comovement is the extremogram introduced

by Davis et al. (2009). This is a flexible conditional measure of extremal serial dependence,

which makes it particularly well suited for financial applications. The plots in the right column

in Figure 1 show the sample extremograms for the 10% of the most negative stock returns

conditional on the 10% of the most positive log-changes on the IV indices at different lags.

The interpretation of the extremogram is similar to the correlogram, given that the IV index

has experienced an extreme positive change at time t, the probability of obtaining a negative

extreme shock in stock market returns at time t + k is reflected by the solid vertical lines

in the sample extremogram for each lag k. The grey lines represent the .975 (upper) and

.025 (lower) confidence interval estimated using a stationary bootstrap procedure proposed by

Davis et al. (2012), while the dashed line corresponds to this conditional probability under the

assumption that extreme events in both markets are occurring independently (for more details

on the estimation refer to Davis et al., 2012).4 Observe that the speed of decay of the sample

extremograms for all five markets is extremely slow, revealing that the dependence of extreme

movements in returns on IV shocks is significant out to about 10 lags in most cases.

4 Empirical results

This section presents both in-sample estimation results in Section 4.1, and comparisons of

forecast performance in terms of risk prediction in Section 4.2.

4.1 Estimation results

Estimation results discussed in this section are based on data up to 30 December 2011. To begin,

Table 2 reports the estimation results for the various GARCH and BEGE specifications. Results

for models using a skew t-distribution are reported, assuming either a conditional normal, or

42000 pseudo-series are generated for the estimation of the extremograms utilizing a stationary bootstrap with
resampling based on block sizes from a geometric distribution with a mean of 200.
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Figure 1: (left column) Extreme negative returns (grey color) and IV log-changes (blue color)
to display the asymmetric association between them. (middle column) Scatter plot of IV log-
changes and stock market returns. The 10% of the most extreme negative (positive) stock market
returns (IV log-changes) are displayed in grey color. (right column) Sample extremograms for
the 10% of the most negative stock returns conditional to the 10% of the most positive log-
changes on the IV indices at different lags. Grey lines represent the .975 (upper) and .025
(lower) confidence interval estimated using a stationary bootstrap procedure proposed by Davis
et al. (2012), while the dashed line (blue color) corresponds to this conditional probability under
the assumption that extreme events between both markets occur independently.
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symmetric student t- distribution leads to inferior results and hence the results are not reported

here. Estimates of the GARCH coefficients reveals a number of common patterns. For models

that do not include IV as an exogenous regressor, estimates of the β coefficient are in excess

of 0.9 indicating a strong degree of volatility persistence. When IV is included, γ is found to

be significant and the presence of IV helps explain a degree of the persistence in many of the

cases with the estimate of β falling. As is to be expected, estimates of the asymmetry coefficient

δ in both the GJR-GARCH and EGARCH models are significant. Conditionally, returns are

found to exhibit relatively heavy tails with estimates of the ν falling between 7 and 15. In

all cases, estimates of the skew parameter ψ significantly less than one indicate that returns

are conditionally negatively skewed, supporting the choice of the skewed-t distribution. Of the

competing models, EGARCH including IV offer the best model fit for all markets. Overall,

the fit of the BEGE models are close to both the GJR-GARCH and EGARCH models. While

both positive and negative components of volatility are found to be persistent, the negative

component exhibits less persistence than the corresponding positive component (ρn < ρp), a

result consistent with the findings of Bekaert and Engstrom (2015). In three of the markets,

the impact of IV on the shape parameters, pt and nt are significant and positive with the final

two still positive though not significant.

Three versions of the univariate model in (9) are estimated. Model 1 is the full model with marks

(ψ > 0) and IV (ρ > 0). Model 2 only includes marks (ψ > 0) restricting ρ = 0. Model 3 includes

neither marks nor covariates and restricts ψ = 0 and ρ = 0. Table 3 reports the estimation

results for the three univariate models. In all cases, the unrestricted Model 1 offers the best

overall fit. Estimates for ψ are significant in all instances, reflecting the importance of the size of

past marks for future intensity. On the other hand, estimates of ρ are strongly significant only

in the S&P500 and Nikkei markets meaning that the level of IV is only important for explaining

the intensity of extreme events in these two markets. While ρ is marginally significant for the

DAX, it is insignificant for the other two remaining markets.

Similar to the univariate case, four versions of the bivariate model are estimated. The ground

intensities under Model 1 are generated by the full unrestricted model in equation (12) and

contain the past times and marks of both extreme return and IV events, with ψ1, ψ2, ρ1 ρ2 > 0,

and with the scale of the return marks specified in equation (14). Model 2 also includes the

past times and marks of both extreme return and IV events, with the restriction that ψ1 = ψ2

and ρ1 = ρ2 with the scale only driven by the arrival times and size of the past return events

(κ12 = 0). Model 3 contains the times and marks of return events (ψ1, ψ2 > 0) but only the

times of past IV events (i.e., ρ1 = ρ2 = 0) with the scale only driven by the size of the past

return events. The ground intensities under Model 4, are restricted to contain the times of past
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return and IV events, ψ1 = ψ2 = 0 and ρ1 = ρ2 = 0 with the scale of the marks being driven by

the timing of past IV events, (ψ1, ψ2 > 0 and ρ1 = ρ2 = 0) and the dynamic introduced by the

arrival times of the extreme events in IV (κ12 > 0).

Table 4 reports estimation results for all four bivariate models. In all markets, Model 3 is found

to provide the best fit to the data, where the ground intensities of extreme return (λ1g) and IV

(λ2g) events are driven by the size of past return marks and the timing of past return and IV

events, and the scale is driven by the size of past return marks. The impact of the timing of

past IV events on the intensities is evident in the positive estimates of φ2 which are significant

in four of the five markets. The degree of self, or cross-excitation is reflected in the combination

of ϑ, ψ or ρ, and φ coefficients. Significant estimates of ϑ11, φ1 and ψ1 for Model 3 reveal strong

self-excitation in the return events with a similar pattern evident for IV events in terms of ϑ22

and φ2. In terms of cross excitation the results are varied, estimates of φ1 and φ2 are nearly

always significant with estimates of ϑ12 and ϑ21 being somewhat mixed. There appears to be

bi-directional cross-excitation in the DAX and Nikkei markets, with excitation from returns to

IV in both the S&P500 and Nasdaq markets.

4.2 Forecasting risk

In this section, results of the tests for VaR accuracy discussed in Section 3 are presented. These

backtesting results are based on the period 2012-2013. Model estimation for forecasting purposes

is initially based on the in-sample period ending 30 December 2011, and then on a recursive

estimation window where the models are re-estimated every week moving through the 2012-2013

period.

Before moving to a formal analysis of VaR accuracy, Figures 2 and 3 show VaR estimates

and predictions at a significance level of 0.99, along with returns for the in- and out-of-sample

(also with exceptions) periods respectively. Results are shown for the S&P 500 index for a

selection of models across the different classes of models considered here, EGARCH + IV,

BEGE+IV, univariate and bivariate Hawkes-POT (both Model 1). Beginning with Figure 2,

it is clear that all the VaR estimates broadly follow the volatility of the overall market. Two

observations emerge, the EGARCH+IV estimates appear to be somewhat more variable for

much much of the period and both Hawkes based VaR estimates adapt to a higher level during

the height of the market volatility in 2009. The lower panels in Figure 2 show the VaR estimates

and associated returns during a number of important periods of crisis and heightened market

volatility. It is evident that focusing in on these periods of interest highlights that the VaR

estimates generated by both MPP models are less variable, certainly in comparison to those

from the EGARCH+IV model. They do however adapt to noticeably higher levels during the
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Figure 2: Plots of in-sample VaR estimates and returns (the negative of log returns are shown)
on the S&P 500 index. VaR estimates are shown for four models across the different classes of
models considered here, EGARCH + IV, BEGE+IV, univariate and bivariate Hawkes-POT. The
top panel shows the full in-sample period, while the lower panels highlight various subperiods
of interest.

peak of historically high volatility in 2009. Figure 3 shows the corresponding VaR predictions

during the backtesting period, 2012-2013. While all the forecasts vary with the overall volatility

in returns, once again, the VaR forecasts from both PP models are less variable than the

EGARCH and BEGE equivalents. The exceptions from each model, BEGE+IV (×), univariate

Hawkes (+) and bivariate Hawkes (▽) are also shown, with EGARCH+IV model producing no

exceptions in this case. Visually speaking, there is no obvious clustering in the exceptions, it is

clear the EGARCH+IV (and to some extent BEGE+IV) are not producing enough exceptions

at α = 0.99 and hence generating slightly conservative VaR predictions.

To begin the formal analysis, Table 5 reports results for the in-sample tests of VaR accuracy

at α = 0.95, 0.99, 0.995, for all GARCH, BEGE and PP models given the full in-sample period

ending in December 2011. Results in the rows denoted by Exc. show that in comparison to the

GARCH models, the bivariate models tend to generate slightly fewer exceptions (Xt > V aRtα)

for most of the series. The bivariate models (include IV) generate a similar number of rejections

relative to the BEGE+IV model. Overall, in the vast majority of the cases, the tests are not

rejected, indicating that the models accurately describe the in-sample behaviour of the extreme

events in the context of VaR estimation. The majority of the rejections that do occur, are found
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Figure 3: Plots of out-of-sample VaR prediction and returns (the negative of log returns are
shown) on the S&P 500 index. VaR estimates are shown for four models across the different
classes of models considered here, EGARCH + IV, BEGE+IV, univariate and bivariate Hawkes-
POT. Exceptions from each model, BEGE+IV (×), univariate Hawkes (+) and bivariate Hawkes
(▽) are also reported. The EGARCH+IV model produced no exceptions in this case.

with the Nikkei, particularly at the highest (0.999) level of significance. Attention now turns to

forecasting.

Table 6 reports results for tests of out-of-sample VaR forecast accuracy. The results are based

on 1-day ahead VaR forecasts for the final backtesting period, January 2, 2012 to December

31, 2013. The first result that stands out is the frequent rejections of the LRuc, and often

MCuc tests for many of the GARCH models (irrespective of whether IV is included) for all

markets except the DAX. This indicates that the GARCH models are producing inaccurate

VaR forecasts as the average rate of rejection is significantly different than the given level of

significance in many cases. While the BEGE models also produce a number of rejections, they

are less frequent than those based on the GARCH forecasts. This improvement reflects the

ability of the more flexible BEGE distribution to capture tail behaviour. Apart from a number

of rejections of the LRuc and MCuc tests in the case of the S&P 500, the univariate Hawkes

POT models produce few other rejections. In contrast, there are no rejections produced under

the bivariate Hawkes-POT forecasts across the four models, levels of significance and the five

markets considered, indicating that treating the IV events an additional MPP offers gains in

forecast accuracy.

Table 7 reports the MCS results based on the asymmetric quantile loss function in 24 and a

level of significance of αM = 5%. Table 7 shows a * when a model is included in the final

MCS at a level of confidence of 95%. The most significant result is that the bivariate models

are included in the final MCS in nearly every case across all markets and VaR levels. Of these

models, Models 1-3, which include both the timing and size of IV events are virtually always
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included in the MCS. Model 4, which only includes the timing of the IV events is excluded in the

majority of cases. These results, once again support the notion that treating IV as an additional

point process and considering the size and timing of these events leads to the greatest benefit

in terms of forecast accuracy. The univariate Hawkes-POT models are included in the MCS in

well over half the cases. Of these models, Model 2, which only includes the size of past return

events, is most frequently included in the MCS. The BEGE models follow closely in terms of

forecast performance and remain in the MCS in about half of the cases. Finally, the GARCH

models are inferior, and are excluded from the MCS in the majority of cases.

Overall these results reveal that harnessing information from IV, when treated as its own point

process is beneficial. Given the bivariate Hawkes-POT models produce the most accurate fore-

casts across the widest range of scenarios, forecasts that pass all the tests of adequacy applied

here, indicates that information regarding the timing and size of past IV extreme events is of

benefit for forecasting VaR in equity markets. The benefit of including IV in a univariate point

process model, or the BEGE framework is somewhat more limited, and of little use the context

of GARCH models.

While the bivariate MPP models appear to dominate at the one day horizon, the final anal-

ysis determines whether adequate VaR forecasts can generated from the PP models at longer

horizons. Based on 5- and 10-day VaR forecasts using the methodology discussed earlier in

Section 3, Table 8 reports results for the LRuc test based on both the univariate and bivariate

PP models. Once again, p-values are reported, with the results shown in bold when a rejection

at 5% is observed. At the h = 5 day horizon, the adequacy of the coverage is only rejected in

22% and 12% of the cases for the univariate and bivariate models, once again indicating the

information in IV is best harness through a bivariate MPP. While unsurprisingly, the rejection

rates do rise moving to the longer horizon of h = 10, the adequacy of the coverage is only

rejected in a quarter of cases for the bivariate models (33% of cases for the univariate models).

In summary, the bivariate Hawkes-POT models that include IV as an additional PP produce

the best performing model across the widest range of scenarios. They pass all of the individual

tests of VaR forecast adequacy, they are most frequently found to be amongst the most accurate

under asymmetric quantile loss, and are able to generate adequate VaR forecast in most cases

at a longer one-week ahead (somewhat less at two-weeks ahead) forecast horizon.

5 Conclusion

Modelling and forecasting the occurrence of extreme events in financial markets is crucially

important. While there have been many studies considering the role of implied volatility (IV)
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for forecasting volatility, this has not been the case when dealing with extreme events. This

paper addresses how best to use IV to generate forecasts of the risk of extreme events in the

form of Value-at-Risk (VaR).

The BEGE model, along with traditional GARCH models including IV as an exogenous variable,

coupled with EVT form the benchmark set of models. More recent advances in VaR prediction

have employed marked point process (MPP) models that treat the points as the occurrence

of extreme events and marks their associated size. This paper proposes a number of novel

MPP models that include IV. A number of univariate models for extreme return events are

developed, where the size and timing of past return events and IV are included. In addition,

novel bivariate MPP models are also proposed that move beyond simply including IV as an

exogenous covariate. The second dimension in the bivariate models apart from extreme stock

market losses are extreme increases in IV which are themselves treated as a second MPP.

The empirical analysis here focuses on a number of major equity market indices and their asso-

ciated IV indices, where the full range of models are used to generate estimates of VaR. In terms

of an in-sample explanation of extreme events in equity markets, the bivariate models satisfy

all backtests of VaR adequacy, while the univariate models and the BEGE models pass most.

The GARCH models produce relatively frequent rejections. A similar pattern is observed when

to 1-day ahead prediction of VaR. GARCH style models that include IV generate inaccurate

forecasts of VaR and fail a number of tests relating to the frequency of the VaR exceptions.

Univariate MPP models and BEGE models provide more accurate forecasts though still do pro-

duce a number of rejections in backtesting. It is also shown that longer horizon VaR forecasts

from the bivariate MPP models satisfy most tests. Overall, the bivariate models that include

the extreme IV events produce the most accurate forecasts of VaR across the full range of lev-

els of significance and markets. A direct comparison of VaR forecast accuracy shows that the

bivariate MPP models that consider the size and timing of past IV events are found to among

the most accurate in the widest range of cases. These results show that while IV is certainly

of benefit for predicting extreme movements in equity returns, the framework within which it

is used is important. It is shown that the novel bivariate MPP model proposed here leads to

superior forecasts of extreme risk in a VaR context.
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A Proofs

Proof. (Proposition 1) Using the continuous representation of a Hawkes process and setting

the expected intensity E [λg(t | Ht)] = λ0 <∞, gives for the univariate case

E [λg(t | Ht)] = E

[
ν + ϑ

�

(−∞,t)×R
2
+

f(w, z)h (t− s)N(ds × dw × dz)

]

= ν + ϑE [f(w, z)]E

[
�

(−∞,t)
h (t− s)λg(s | Hs)ds

]

and by assuming E [f(w, z)] = µwz and by defining λg(s | Hs)ds = N(ds) leads to

E [λg(t | Ht)] = ν + ϑµwz

�

(−∞,t)
h (t− s)λ0ds

= ν + ϑµwzλ0

�

(0,∞)
h (s) ds

= ν + ϑµwzλ0,

where finally λ0 = (1− ϑµwz)
−1 ν is obtained. Hence, the expectation of the ground conditional

intensity is finite in the univariate case, if and only if, 0 < ϑµwz < 1.

In the bivariate model the demonstration follows the same steps. Assume that the expected

intensity E
[
λkg(t | Ht)

]
= λk0 < ∞, for k = 1, 2. Then, by taking the unconditional expectation

in (12) leads to

E
[
λ1g(t | Ht)

]
= E

[
ν1 + ϑ11

�

(−∞,t)×R+

f1(w)h1 (t− s)N1(ds × dw)

]

+E

[
+ϑ12

�

(−∞,t)×R+

f1(z)h2 (t− s)N2(ds × dz)

]

E
[
λ2g(t | Ht)

]
= E

[
ν2 + ϑ21

�

(−∞,t)×R+

f2(w)h1 (t− s)N1(ds × dw)

]

+E

[
ϑ22

�

(−∞,t)×R+

f2(z)h2 (t− s)N2(ds × dz)

]

by assuming E [fk(w)] = µkw and E [fk(z)] = µkz , the expectations are reduced to

E
[
λ1g(t | Ht)

]
= ν1 + ϑ11µ

1
wE

[
�

(−∞,t)
h1 (t− s)N1(ds)+

]
+ ϑ12µ

1
zE

[
�

(−∞,t)
h2 (t− s)N1(ds)

]

E
[
λ2g(t | Ht)

]
= ν2 + ϑ21µ

2
wE

[
�

(−∞,t)
h1 (t− s)N1(ds)+

]
+ ϑ22µ

2
zE

[
�

(−∞,t)
h2 (t− s)N2(ds)

]
.

Since the kernel functions satisfy
�∞
0 hk (s) ds = 1 and λkg(s | Hs)ds = Nk(ds) for k = 1, 2, it is
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possible to express

E
[
λ1g(t | Ht)

]
= ν1 + ϑ11µ

1
wE

[
�

(0,∞)
h1 (s)λ

1
g(s | Hs)ds

]
+ ϑ12µ

1
zE

[
�

(0,∞)
h2 (s)λ

2
g(s | Hs)ds)

]

E
[
λ2g(t | Ht)

]
= ν2 + ϑ21µ

2
wE

[
�

(0,∞)
h1 (s)λ

1
g(s | Hs)ds

]
+ ϑ22µ

2
zE

[
�

(0,∞)
h2 (s)λ

2
g(s | Hs)ds)

]
,

which in turn is equivalent to

E
[
λ1g(t | Ht)

]
= ν1 + ϑ11µ

1
wλ

1
0 + ϑ12µ

1
zλ

2
0

E
[
λ2g(t | Ht)

]
= ν2 + ϑ21µ

2
wλ

1
0 + ϑ22µ

2
zλ

2
0,

or in matrix representation

λ0 = ν + (M ◦Q)λ0,

where ν = (ν1, ν2)
T , M =

(
µ1w µ1z
µ2w µ2z

)
and Q =

(
ϑ11 ϑ12

ϑ21 ϑ22

)
. Hence the unconditional

expectation of the ground intensity given by λ0 = (12 −M ◦Q)−1 ν exists, if and only if, the

spectral radius of the matrix M ◦Q is less than one.
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B Figures and Tables

Data Model
ARMA specification GARCH specification Skew-t Student dist.

µ a1 b1 a2 b2 ω α β δ γ ψ (skew) ν (shape) Log. like AIC

S
&
P
50
0
-V

IX
GJRGARCH 3.12E-04 0.705 -0.739 8.62E-07 0.038 0.935 0.705 0.907 7.940 18126.82 -36235.64

(9.25E-05) (0.077) (0.073) (3.87E-07) (0.003) (0.006) (0.161) (0.016) (0.784)
GJRGARCH+IV 2.95E-04 0.722 -0.759 3.88E-07 0.040 0.929 0.673 5.15E-08 0.906 7.729 18135.78 -36251.56

(9.13E-05) (0.068) (0.063) (2.13E-07) (0.004) (0.002) (0.126) (3.74E-08) (0.016) (0.725)
EGARCH 2.88E-04 0.671 -0.703 -1.18E-01 -0.090 0.987 0.119 0.910 7.820 18126.34 -36234.68

(8.29E-05) (0.025) (0.024) (4.07E-03) (0.008) (0.000) (0.013) (0.016) (1.097)
EGARCH+IV 3.00E-04 0.869 -0.889 -3.57E+00 -0.173 0.780 0.028 5.11E-01 0.906 8.854 18189.92 -36359.83

(9.11E-05) (0.025) (0.023) (8.35E-02) (0.013) (0.005) (0.018) (8.83E-03) (0.017) (1.006)
GARCH 4.73E-04 0.794 -0.841 5.14E-07 0.063 0.934 0.909 7.095 18070.46 -36124.93

(8.31E-05) (0.047) (0.042) (2.61E-07) (0.005) (0.004) (0.017) (0.656)
GARCH+IV 4.68E-04 0.785 -0.832 2.76E-07 0.060 0.936 1.61E-08 0.909 6.958 18072.18 -36126.36

(8.40E-05) (0.049) (0.044) (2.17E-07) (0.001) (0.001) (4.41E-08) (0.017) (0.618)

D
A
X

-
V
D
A
X

GJRGARCH 3.76E-04 -0.796 -0.929 0.808 0.942 2.10E-06 0.065 0.911 0.443 0.891 11.881 15173.94 -30325.88
(1.46E-04) (0.032) (0.007) (0.030) (0.009) (1.11E-06) (0.011) (0.012) (0.072) (0.018) (1.761)

GJRGARCH+IV 3.48E-04 -0.666 -0.973 0.676 0.976 2.56E-09 0.056 0.895 0.594 2.40E-07 0.887 13.002 15192.05 -30360.10
(1.42E-04) (0.004) (0.003) (0.001) (0.002) (3.83E-07) (0.003) (0.004) (0.102) (3.94E-08) (0.018) (1.956)

EGARCH 3.33E-04 -0.847 -0.985 0.852 0.993 -1.48E-01 -0.090 0.983 0.157 0.888 11.540 15181.30 -30340.61
(1.48E-04) (0.004) (0.002) (0.003) (0.001) (8.08E-03) (0.008) (0.001) (0.015) (0.018) (0.231)

EGARCH+IV 4.02E-04 0.020 -0.895 -0.031 0.877 -3.80E+00 -0.177 0.754 0.058 5.36E-01 0.886 13.474 15251.98 -30479.97
(1.38E-04) (0.047) (0.044) (0.050) (0.048) (6.19E-01) (0.016) (0.039) (0.022) (9.16E-02) (0.018) (2.113)

GARCH 6.35E-04 -0.666 -0.972 0.678 0.977 1.36E-06 0.083 0.912 0.898 10.438 15134.10 -30248.20
(1.45E-04) (0.002) (0.004) (0.002) (0.001) (1.45E-06) (0.017) (0.018) (0.017) (1.204)

GARCH+IV 6.24E-04 -0.666 -0.972 0.678 0.977 6.82E-09 0.081 0.903 1.48E-07 0.898 10.775 15142.63 -30263.27
(1.47E-04) (0.003) (0.004) (0.003) (0.001) (3.89E-07) (0.003) (0.003) (2.12E-08) (0.018) (1.374)

D
J
I
-
V
X
D

GJRGARCH 2.20E-04 -0.337 0.492 0.283 -0.525 1.04E-06 0.031 0.930 0.997 0.893 10.098 11175.19 -22328.38
(1.16E-04) (0.179) (0.148) (0.168) (0.133) (2.50E-06) (0.009) (0.028) (0.335) (0.013) (1.895)

GJRGARCH+IV 2.06E-04 -0.275 0.552 0.220 -0.586 2.00E-08 0.032 0.921 0.958 1.02E-07 0.889 10.801 11186.98 -22349.97
(1.29E-04) (0.265) (0.244) (0.254) (0.228) (2.73E-07) (0.006) (0.003) (0.198) (2.59E-08) (0.020) (1.601)

EGARCH 1.33E-04 0.057 -0.542 -0.101 0.527 -1.32E-01 -0.116 0.986 0.102 0.889 10.231 11183.27 -22344.54
(1.19E-04) (0.029) (0.051) (0.029) (0.052) (1.98E-03) (0.009) (0.002) (0.003) (0.021) (1.482)

EGARCH+IV 1.18E-04 0.107 -0.561 -0.152 0.551 -1.50E+00 -0.182 0.901 0.036 1.98E-01 0.878 12.840 11226.76 -22429.51
(1.25E-04) (0.070) (0.073) (0.070) (0.073) (2.81E-02) (0.013) (0.002) (0.009) (8.74E-03) (0.021) (2.498)

GARCH 4.53E-04 -0.127 0.667 0.071 -0.702 9.14E-07 0.078 0.917 0.900 8.784 11125.37 -22230.74
(1.19E-04) (0.159) (0.110) (0.154) (0.107) (7.99E-07) (0.011) (0.011) (0.021) (1.126)

GARCH+IV 4.30E-04 -0.156 0.661 0.101 -0.698 2.68E-07 0.080 0.900 1.15E-07 0.903 8.710 11132.12 -22242.25
(1.22E-04) (0.142) (0.110) (0.137) (0.106) (3.70E-07) (0.003) (0.004) (1.06E-08) (0.021) (1.107)

N
ik
ke
i
-
V
X
J

GJRGARCH 9.72E-06 0.698 -0.714 4.64E-06 0.073 0.896 0.361 0.922 13.109 9833.49 -19648.98
(2.24E-04) (0.097) (0.072) (2.39E-06) (7.56E-03) (6.72E-03) (5.97E-02) (0.023) (2.319)

GJRGARCH+IV -3.26E-05 0.611 -0.628 2.83E-09 0.057 0.865 0.540 4.92E-07 0.923 13.950 9851.19 -19682.38
(2.00E-04) (0.661) (0.651) (7.67E-07) (4.02E-03) (7.50E-03) (1.10E-01) (9.64E-08) (0.022) (2.727)

EGARCH -7.46E-05 0.312 -0.335 -2.41E-01 -0.088 0.972 0.160 0.925 12.960 9838.55 -19659.11
(2.56E-04) (0.033) (0.033) (5.92E-02) (1.07E-02) (6.99E-03) (8.17E-02) (0.024) (3.274)

EGARCH+IV 5.52E-05 0.770 -0.782 -6.76E+00 -0.178 0.556 -0.006 9.14E-01 0.940 14.052 9884.52 -19749.04
(2.06E-04) (0.276) (0.270) (1.41E+00) (2.37E-02) (8.99E-02) (4.29E-02) (1.99E-01) (0.023) (2.929)

GARCH 2.42E-04 0.797 -0.824 3.44E-06 0.084 0.902 0.921 11.179 9810.78 -19605.56
(1.89E-04) (0.141) (0.132) (1.81E-06) (1.27E-02) (1.45E-02) (0.023) (1.891)

GARCH+IV 1.96E-04 0.788 -0.814 1.13E-08 0.077 0.872 4.19E-07 0.920 12.075 9825.88 -19633.75
(1.91E-04) (0.144) (0.136) (7.87E-07) (5.27E-03) (6.75E-03) (8.66E-08) (0.023) (2.138)

N
as
d
aq

-
V
X
N

GJRGARCH 1.66E-04 -0.001 -0.913 -0.011 0.891 1.23E-06 0.026 0.942 0.982 0.873 17.846 7945.15 -15868.30
(1.71E-04) (0.068) (0.048) (0.076) (0.053) (2.39E-06) (0.004) (0.021) (0.380) (0.023) (0.653)

GJRGARCH+IV 1.56E-04 -0.007 -0.477 -0.027 0.440 6.79E-07 0.033 0.930 0.819 7.47E-08 0.867 15.936 7948.68 -15873.37
(1.97E-04) (0.304) (0.389) (0.307) (0.405) (4.27E-07) (0.007) (0.003) (0.243) (2.49E-08) (0.023) (3.642)

EGARCH 9.74E-05 0.020 -0.922 -0.035 0.904 -8.99E-02 -0.091 0.990 0.091 0.863 16.249 7945.70 -15869.39
(1.42E-04) (0.017) (0.025) (0.019) (0.028) (1.78E-03) (0.009) (0.001) (0.003) (0.023) (4.190)

EGARCH+IV 1.16E-04 -0.192 -0.394 0.167 0.356 -1.46E+00 -0.164 0.899 0.046 1.76E-01 0.849 20.539 7971.87 -15919.75
(1.95E-04) (0.150) (0.072) (0.152) (0.073) (2.69E-02) (0.014) (0.001) (0.011) (8.28E-03) (0.023) (6.307)

GARCH 3.59E-04 1.605 -0.608 -1.653 0.654 1.17E-06 0.069 0.927 0.880 15.341 7917.08 -15814.16
(8.16E-05) (0.001) (0.001) (0.002) (0.002) (6.83E-07) (0.002) (0.002) (0.024) (4.224)

GARCH+IV 4.74E-04 0.061 0.470 -0.092 -0.513 4.62E-07 0.067 0.924 6.04E-08 0.880 12.918 7913.14 -15804.29
(1.84E-04) (0.328) (0.259) (0.324) (0.263) (5.05E-07) (0.003) (0.004) (3.91E-08) (0.024) (2.521)

Data Model p0 σp ρp φ+p φ−p n0 σn ρn φ+n φ−n
S&P500 -VIX BEGE 0.026 0.002 0.970 0.006 0.043 0.096 0.005 0.862 -0.034 0.274 18140.25 -36260.51

(0.020) (5.0.E-06) (2.2.E-04) (0.005) (0.007) (0.021) (6.1.E-05) (5.2.E-04) (0.021) (0.037)
BEGE+IV 0.027 0.002 0.970 5.6.E-03 0.043 0.095 0.005 0.863 -0.037 0.278 0.040 18149.66 -36277.32

(3.1.E-06) (3.4.E-06) (3.2.E-05) (5.2.E-07) (1.4.E-06) (1.6.E-05) (2.1.E-06) (3.6.E-04) (1.2.E-05) (4.4.E-05) (9.8.E-07)
DAX - VDAX BEGE 0.090 0.002 0.938 0.083 0.028 0.129 0.005 0.847 -0.033 0.304 15161.66 -30303.33

(0.021) (1.1.E-04) (2.6.E-04) (0.013) (0.009) (0.018) (4.8.E-04) (0.011) (0.009) (0.023)
BEGE+IV 0.087 0.002 0.938 0.082 0.032 0.128 0.005 0.846 -0.035 0.307 0.049 15164.92 -30309.85

(0.004) (3.0.E-10) (8.0.E-05) (3.2.E-04) (0.001) (0.007) (3.4.E-04) (2.9.E-05) (0.002) (0.012) (0.003)
DJI - VXD BEGE 0.018 0.003 0.961 4.3.E-06 0.063 0.101 0.005 0.882 -0.046 0.248 11177.56 -22335.13

(0.041) (5.7.E-04) (1.9.E-04) (0.013) (0.052) (0.022) (7.4.E-04) (7.1.E-05) (0.032) (0.091)
BEGE+IV 0.024 0.002 0.961 3.0.E-06 0.059 0.104 0.004 0.893 -0.050 0.245 0.056 11179.66 -22337.33

(3.7.E-04) (5.7.E-07) (1.0.E-05) (1.1.E-04) (2.5.E-04) (1.9.E-05) (2.9.E-06) (3.4.E-04) (0.002) (0.012) (0.007)
Nikkei - VXJ BEGE 0.030 0.004 0.952 0.051 0.034 0.123 0.007 0.851 -0.021 0.247 9827.51 -19635.02

(0.009) (4.5.E-04) (1.8.E-04) (0.016) (0.018) (0.015) (0.001) (2.0.E-04) (0.017) (0.046)
BEGE+IV 0.031 0.004 0.951 0.055 0.024 0.167 0.006 0.844 -0.023 0.254 0.228 9832.16 -19642.32

(0.011) (2.0.E-04) (0.011) (0.012) (0.005) (0.040) (0.001) (0.003) (0.005) (0.022) (0.159)
Nasdaq - VXN BEGE 7.5.E-06 0.002 0.973 6.0.E-06 0.038 0.144 0.005 0.897 -0.044 0.240 7951.47 -15882.95

(0.015) 3.5.E-04 (0.011) (0.013) (0.013) (0.088) (4.8.E-04) (0.059) (0.015) (0.094)
BEGE+IV 5.1.E-06 0.003 0.974 -1.0.E-06 0.020 0.076 0.005 0.927 -0.080 0.217 0.549 7955.32 -15888.64

(0.010) (0.001) (0.008) (0.011) (0.019) (0.012) (9.7.E-06) (8.9.E-05) (0.019) (0.023) (0.351)

Table 2: Estimation results for the volatility models (GARCH and BEGE) applied to the re-
turns on each of the equity indices, based on the full in-sample period ending 30 December
2011. Standard errors based on inversion of the numerical Hessian are reported in parenthe-
ses. Log.like corresponds to the log-likelihood value obtained, while the AIC is the Akaike
Information Criterion.
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Data Model ν ϑ φ ψ ρ κ0 κ1 ξ Log. like AIC

S
&
P
50
0
-V

IX

1 0.031 0.386 0.046 27.660 5.351 0.004 0.017 -0.097 446.904 -877.807
(0.005) (0.049) (0.008) (3.408) (2.006) (0.000) (0.002) (0.034)

2 0.033 0.449 0.054 32.389 0.004 0.019 -0.092 443.718 -873.435
(0.005) (0.050) (0.008) (2.944) (0.000) (0.002) (0.035)

3 0.021 0.794 0.038 0.004 0.030 0.043 410.805 -809.609
(0.004) (0.054) (0.006) (0.000) (0.003) (0.038)

D
J
I
-
V
X
D

1 0.040 0.322 0.071 36.720 1.374 0.005 0.016 -0.177 276.613 -537.225
(0.007) (0.060) (0.012) (4.567) (1.007) (0.001) (0.003) (0.044)

2 0.041 0.358 0.074 38.681 0.005 0.018 -0.173 275.746 -537.493
(0.006) (0.058) (0.012) (4.336) (0.001) (0.003) (0.044)

3 0.024 0.761 0.048 0.004 0.033 -0.025 252.712 -493.423
(0.006) (0.069) (0.009) (0.001) (0.005) (0.050)

D
A
X

-
V
D
A
X 1 0.044 0.259 0.073 43.010 1.655 0.005 0.016 -0.179 333.364 -650.727

(0.005) (0.046) (0.010) (4.257) (1.026) (0.001) (0.003) (0.033)
2 0.044 0.294 0.074 43.319 0.005 0.018 -0.180 332.085 -650.170

(0.005) (0.045) (0.010) (4.076) (0.001) (0.003) (0.034)
3 0.027 0.736 0.050 0.004 0.042 -0.034 292.604 -573.208

(0.005) (0.057) (0.007) (0.001) (0.004) (0.035)

N
ik
ke
i
-
V
X
J 1 0.060 0.164 0.066 22.564 2.927 0.005 0.023 -0.101 150.623 -285.246

(0.009) (0.067) (0.012) (5.068) (0.906) (0.001) (0.004) (0.050)
2 0.060 0.207 0.078 31.455 0.004 0.025 -0.029 146.767 -279.534

(0.009) (0.072) (0.016) (4.118) (0.001) (0.004) (0.040)
3 0.034 0.630 0.047 0.004 0.038 0.133 121.026 -230.052

(0.008) (0.093) (0.012) (0.001) (0.007) (0.059)

N
as
d
aq

-
V
X
N 1 0.037 0.386 0.059 35.745 0.290 0.006 0.019 -0.231 261.475 -506.949

(0.005) (0.058) (0.010) (4.484) (1.044) (0.001) (0.003) (0.052)
2 0.037 0.389 0.060 36.398 0.006 0.019 -0.230 261.436 -508.871

(0.006) (0.054) (0.010) (3.658) (0.001) (0.003) (0.044)
3 0.024 0.789 0.047 0.004 0.039 -0.056 232.970 -453.939

(0.006) (0.065) (0.007) (0.001) (0.005) (0.043)

Table 3: Estimation results for the univariate Hawkes-POT models based on extreme events
in negative log-returns in stock market indices and positive changes in IV indices, ending 30
December 2011. Standard errors based on inversion of the numerical Hessian are reported
in parentheses. Log.like corresponds to the log-likelihood of the model. AIC is the Akaike
Information Criterion.
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Data Model ν1 ϑ11 ϑ12 φ1 ψ1 ψ2 ρ1 ρ2 ν2 ϑ21 ϑ22 φ2 κ0 κ1 κ12 ξ log. like AIC

S
&
P
50
0
-V

IX

1 0.033 0.448 0.000 0.054 32.417 2.732 0.000 65.385 0.066 0.006 0.323 0.030 0.004 0.019 0.000 -0.093 -1460.58 2953.15
(0.005) (0.043) (0.008) (0.001) (0.002) (0.034) (0.003) (0.010) (0.005) (0.108) (0.013) (0.001) (2.009) (5.156) (1.336) (0.002)

2 0.034 0.445 0.000 0.054 32.647 0.000 0.000 32.647 0.065 0.025 0.318 0.031 0.004 0.019 0.000 -0.093 -1461.07 2950.14
(0.005) (0.050) (0.003) (0.008) (2.933) (0.002) (0.002) (2.933) (0.010) (0.017) (0.118) (0.014) (0.000) (0.002) (0.000) (0.035)

3 0.034 0.445 0.000 0.054 32.647 32.647 0.065 0.025 0.318 0.031 0.004 0.019 -0.093 -1461.07 2946.14
(0.005) (0.050) (0.003) (0.008) (2.933) (2.933) (0.010) (0.017) (0.118) (0.014) (0.000) (0.002) (0.035)

4 0.020 0.803 0.000 0.035 0.063 0.000 0.378 0.029 0.003 0.023 0.019 0.035 -1491.98 3007.96
(0.004) (0.055) (0.005) (0.006) (0.010) (0.002) (0.099) (0.010) (0.001) (0.005) (0.009) (0.037)

D
J
I
-
V
X
D

1 0.036 0.360 0.000 0.075 38.658 0.121 0.000 0.624 0.050 0.000 0.447 0.033 0.005 0.020 0.000 -0.166 -920.33 1872.65
(0.006) (0.050) (0.001) (0.009) (1.749) (0.051) (0.002) (0.315) (0.011) (0.009) (0.114) (0.017) (0.001) (0.002) (0.000) (0.047)

2 0.036 0.360 0.000 0.075 38.658 0.000 0.000 38.658 0.050 0.000 0.447 0.033 0.005 0.020 0.000 -0.164 -920.33 1868.65
(0.006) (0.059) (0.004) (0.013) (4.457) (0.002) (0.002) (4.457) (0.011) (0.001) (0.125) (0.019) (0.001) (0.003) (0.000) (0.048)

3 0.036 0.360 0.000 0.075 38.658 38.658 0.050 0.000 0.447 0.033 0.005 0.020 -0.164 -920.33 1864.65
(0.006) (0.059) (0.004) (0.013) (4.457) (4.457) (0.011) (0.001) (0.125) (0.019) (0.001) (0.003) (0.048)

4 0.021 0.762 0.009 0.045 0.053 0.000 0.420 0.040 0.003 0.033 0.010 -0.005 -941.05 1906.11
(0.008) (0.074) (0.092) (0.009) (0.010) (0.001) (0.112) (0.019) (0.001) (0.006) (0.008) (0.052)

D
A
X

-
V
D
A
X 1 0.000 0.183 0.642 0.094 49.216 0.000 0.000 102.345 0.040 0.002 0.610 0.004 0.006 0.015 0.000 -0.191 -1394.83 2821.65

(0.007) (0.040) (0.110) (0.013) (4.202) (0.004) (0.004) (14.201) (0.011) (0.015) (0.126) (0.001) (0.001) (0.002) (0.001) (0.034)
2 0.000 0.180 0.643 0.094 49.785 0.002 0.002 49.785 0.041 0.023 0.577 0.004 0.006 0.015 0.000 -0.192 -1439.64 2907.29

(0.007) (0.039) (0.070) (0.013) (4.593) (0.001) (0.001) (4.593) (0.010) (0.014) (0.093) (0.001) (0.001) (0.002) (0.000) (0.034)
3 0.000 0.180 0.644 0.094 49.785 49.785 0.041 0.023 0.577 0.004 0.006 0.015 -0.192 -1395.74 2815.48

(0.007) (0.040) (0.110) (0.013) (4.604) (4.604) (0.011) (0.015) (0.126) (0.001) (0.001) (0.002) (0.034)
4 0.017 0.699 0.137 0.042 0.051 0.001 0.493 0.039 0.003 0.037 0.017 -0.055 -1439.64 2903.29

(0.007) (0.068) (0.089) (0.009) (0.010) (0.061) (0.116) (0.014) (0.001) (0.005) (0.008) (0.039)

N
ik
ke
i
-
V
X
J 1 0.057 0.181 0.062 0.079 32.442 0.447 0.000 0.681 0.065 0.000 0.354 0.063 0.005 0.024 0.000 -0.031 -1059.93 2151.85

(0.009) (0.073) (0.001) (0.016) (4.117) (72.437) (4.841) (128.903) (0.012) (0.001) (0.236) (0.002) (0.002) (0.004) (0.081) (0.040)
2 0.057 0.168 0.068 0.080 33.449 0.003 0.003 33.449 0.066 0.019 0.318 0.066 0.005 0.023 0.000 -0.033 -1059.58 2147.16

(0.010) (0.079) (0.034) (0.017) (4.860) (0.000) (0.000) (4.860) (0.009) (0.013) (0.096) (0.024) (0.001) (0.004) (0.001) (0.040)
3 0.057 0.168 0.068 0.080 33.449 33.449 0.066 0.019 0.318 0.066 0.005 0.023 -0.033 -1059.58 2143.16

(0.010) (0.079) (0.034) (0.017) (4.860) (4.860) (0.009) (0.013) (0.096) (0.024) (0.001) (0.004) (0.040)
4 0.013 0.712 0.135 0.021 0.068 0.000 0.322 0.082 0.003 0.022 0.030 0.113 -1076.99 2177.98

(0.010) (0.097) (0.069) (0.007) (0.008) (0.001) (0.079) (0.019) (0.001) (0.008) (0.008) (0.055)

N
as
d
aq

-
V
X
N 1 0.026 0.423 0.000 0.065 35.420 9.092 0.000 7.960 0.028 0.000 0.762 0.008 0.005 0.022 0.002 -0.247 -801.20 1634.40

(0.030) (0.027) (0.015) (0.006) (0.024) (0.040) (0.021) (0.023) (0.036) (0.016) (0.065) (0.014) (0.021) (0.033) (0.026) (0.029)
2 0.037 0.388 0.000 0.060 36.490 0.000 0.000 36.490 0.032 0.004 0.742 0.007 0.006 0.019 0.000 -0.231 -801.22 1630.45

(0.006) (0.055) (0.001) (0.010) (3.684) (0.002) (0.002) (3.684) (0.013) (0.023) (0.119) (0.006) (0.001) (0.003) (0.000) (0.044)
3 0.037 0.388 0.000 0.060 36.494 36.494 0.032 0.005 0.743 0.007 0.006 0.019 -0.231 -800.50 1624.99

(0.006) (0.055) (0.001) (0.010) (3.684) (3.684) (0.013) (0.023) (0.119) (0.006) (0.001) (0.003) (0.044)
4 0.024 0.788 0.000 0.047 0.033 0.000 0.739 0.008 0.004 0.038 0.005 -0.059 -821.64 1667.29

(0.006) (0.065) (0.001) (0.007) (0.011) (0.001) (0.115) (0.005) (0.001) (0.005) (0.008) (0.043)

Table 4: Estimation results for the bivariate Hawkes-POT models based extreme events in
negative log-returns in stock indices and positive level-changes in IV indices, ending 30 December
2011. Standard errors based on inversion of the numerical Hessian are reported in parentheses.
log.like corresponds to the log-likelihood of the model. AIC is the Akaike Information Criterion.
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Returns Statistics
Volatility Models (In-sample) Univariate Hawkes-POT (In-sample) Bivariate Hawkes-POT (In-sample)

GJRGARCH GJRGARCH+IV EGARCH EGARCH+IV GARCH GARCH+IV BEGE BEGE+IV M1 M2 M3 M1 M2 M3 M4

α- level 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999

S&P500 -VIX

Exc. 286 54 7 285 51 7 280 57 9 293 60 7 297 61 10 297 61 10 225 39 10 247 43 10 245 52 8 259 49 10 260 52 11 260 49 8 246 52 8 259 49 8 243 53 9
LRuc 0.59 0.84 0.55 0.63 0.54 0.55 0.87 0.84 0.18 0.34 0.54 0.55 0.23 0.46 0.09 0.23 0.46 0.09 0.00 0.02 0.09 0.06 0.08 0.09 0.04 0.64 0.33 0.26 0.38 0.09 0.28 0.64 0.04 0.28 0.38 0.33 0.05 0.64 0.33 0.26 0.38 0.33 0.03 0.74 0.18
LRind 0.74 0.30 0.89 0.71 0.33 0.89 0.44 0.62 0.86 0.10 0.25 0.89 0.30 0.70 0.85 0.59 0.70 0.85 0.45 0.46 0.85 0.18 0.41 0.85 0.50 0.32 0.88 0.40 0.35 0.85 0.17 0.52 0.83 0.17 0.35 0.88 0.35 0.32 0.88 0.40 0.35 0.88 0.47 0.31 0.86
LRcc 0.82 0.58 0.83 0.84 0.52 0.83 0.73 0.86 0.40 0.16 0.43 0.83 0.28 0.71 0.23 0.42 0.71 0.23 0.00 0.05 0.23 0.07 0.15 0.23 0.10 0.55 0.61 0.37 0.44 0.23 0.22 0.73 0.12 0.22 0.44 0.61 0.09 0.55 0.61 0.37 0.44 0.61 0.08 0.57 0.40
DQhit 0.74 0.31 0.89 0.72 0.33 0.89 0.45 0.62 0.86 0.11 0.25 0.89 0.31 0.71 0.85 0.60 0.71 0.85 0.46 0.46 0.85 0.19 0.41 0.85 0.51 0.32 0.88 0.41 0.35 0.85 0.18 0.52 0.83 0.18 0.35 0.88 0.36 0.32 0.88 0.41 0.35 0.88 0.48 0.31 0.86
DQVaR 0.62 0.48 0.99 0.73 0.52 0.99 0.74 0.65 0.99 0.27 0.42 0.99 0.47 0.66 0.98 0.68 0.67 0.98 0.03 0.08 0.00 0.05 0.02 0.00 0.03 0.51 0.99 0.53 0.53 0.98 0.31 0.61 0.98 0.39 0.52 0.99 0.02 0.51 0.99 0.65 0.53 0.99 0.04 0.50 0.99
MCuc 0.59 0.90 0.51 0.64 0.54 0.43 0.89 0.85 0.16 0.34 0.50 0.41 0.23 0.46 0.06 0.22 0.46 0.08 0.00 0.02 0.06 0.06 0.10 0.08 0.05 0.63 0.25 0.24 0.37 0.08 0.29 0.63 0.04 0.28 0.37 0.35 0.05 0.64 0.35 0.26 0.43 0.35 0.04 0.80 0.16
MCind 0.88 0.28 0.62 0.93 0.32 0.62 0.78 0.06 0.42 0.12 0.33 0.32 0.19 0.15 0.24 0.18 0.18 0.25 0.20 0.03 0.14 0.68 0.01 0.14 0.00 0.01 0.30 0.00 0.05 0.32 0.00 0.06 0.21 0.00 0.07 0.30 0.00 0.06 0.30 0.00 0.05 0.30 0.00 0.01 0.22
MCcc 0.24 0.58 0.73 0.15 0.63 0.74 0.46 0.09 0.86 0.25 0.66 0.66 0.38 0.32 0.49 0.37 0.36 0.50 0.38 0.07 0.29 0.66 0.03 0.29 0.00 0.02 0.62 0.01 0.10 0.62 0.01 0.13 0.41 0.01 0.14 0.60 0.00 0.13 0.60 0.01 0.10 0.60 0.01 0.02 0.44

DAX - VDAX

Exc. 292 58 6 284 58 6 294 58 10 297 53 8 318 53 9 309 54 8 216 34 3 207 31 3 253 60 15 254 60 13 229 43 16 248 62 17 248 58 16 246 61 5 232 43 6
LRuc 0.40 0.76 0.86 0.73 0.76 0.86 0.34 0.76 0.09 0.26 0.72 0.33 0.02 0.72 0.18 0.06 0.82 0.33 0.01 0.01 0.32 0.00 0.00 0.32 0.99 0.20 0.00 0.94 0.20 0.00 0.12 0.27 0.00 0.75 0.12 0.00 0.75 0.31 0.00 0.65 0.15 0.98 0.17 0.27 0.68
LRind 0.09 0.02 0.91 0.35 0.02 0.91 0.02 0.02 0.85 0.19 0.11 0.88 0.07 0.11 0.86 0.06 0.11 0.88 0.11 0.50 0.95 0.08 0.54 0.95 0.13 0.74 0.77 0.14 0.74 0.80 0.16 0.06 0.75 0.05 0.79 0.73 0.41 0.70 0.75 0.37 0.22 0.92 0.67 0.38 0.90
LRcc 0.17 0.08 0.98 0.61 0.08 0.98 0.04 0.08 0.24 0.22 0.25 0.62 0.01 0.25 0.40 0.03 0.28 0.62 0.01 0.04 0.61 0.00 0.01 0.61 0.33 0.41 0.00 0.34 0.41 0.01 0.11 0.09 0.00 0.15 0.29 0.00 0.67 0.55 0.00 0.61 0.17 0.99 0.36 0.37 0.91
DQhit 0.10 0.03 0.91 0.36 0.03 0.91 0.02 0.03 0.85 0.20 0.11 0.88 0.07 0.11 0.86 0.07 0.12 0.88 0.12 0.50 0.95 0.08 0.54 0.95 0.15 0.75 0.77 0.15 0.75 0.80 0.17 0.06 0.75 0.06 0.79 0.74 0.42 0.70 0.75 0.39 0.22 0.92 0.68 0.38 0.91
DQVaR 0.24 0.06 0.99 0.61 0.06 0.99 0.07 0.06 0.98 0.44 0.20 0.99 0.10 0.19 0.98 0.15 0.20 0.99 0.01 0.70 0.81 0.00 0.64 0.81 0.33 0.63 0.92 0.36 0.64 0.94 0.00 0.11 0.92 0.17 0.64 0.91 0.69 0.62 0.92 0.59 0.31 0.99 0.00 0.51 0.99
MCuc 0.39 0.75 0.67 0.72 0.74 0.73 0.33 0.74 0.07 0.26 0.76 0.38 0.02 0.69 0.12 0.06 0.82 0.35 0.01 0.02 0.43 0.00 0.00 0.24 0.95 0.20 0.00 0.89 0.17 0.00 0.11 0.27 0.00 0.80 0.11 0.00 0.75 0.29 0.00 0.68 0.14 0.79 0.19 0.28 0.74
MCind 0.36 0.43 0.23 0.65 0.77 0.22 0.32 0.71 0.58 0.22 0.11 0.17 0.08 0.38 0.53 0.16 0.72 0.60 0.20 0.59 0.99 0.35 0.19 0.99 0.01 0.88 0.49 0.01 0.87 0.64 0.04 0.52 0.43 0.00 0.78 0.36 0.00 0.87 0.49 0.00 0.94 0.11 0.01 0.86 0.07
MCcc 0.74 0.86 0.46 0.70 0.45 0.45 0.63 0.59 0.81 0.43 0.20 0.33 0.17 0.79 0.92 0.32 0.55 0.78 0.41 0.84 0.02 0.67 0.38 0.01 0.01 0.24 0.98 0.01 0.25 0.71 0.07 0.95 0.88 0.01 0.46 0.76 0.00 0.26 0.99 0.00 0.12 0.22 0.01 0.28 0.14

DJI - VXD

Exc. 180 39 5 180 37 5 178 37 5 187 37 5 201 41 7 205 36 6 153 25 7 157 29 6 161 34 10 162 35 11 153 28 8 166 38 12 163 36 11 164 36 12 156 27 7
LRuc 0.76 0.53 0.46 0.76 0.76 0.46 0.88 0.76 0.46 0.40 0.76 0.46 0.06 0.34 0.10 0.03 0.90 0.23 0.07 0.07 0.10 0.13 0.28 0.23 0.26 0.86 0.00 0.30 0.99 0.00 0.08 0.21 0.04 0.47 0.62 0.00 0.34 0.87 0.00 0.38 0.87 0.00 0.13 0.15 0.10
LRind 0.21 0.45 0.91 0.21 0.41 0.91 0.03 0.41 0.91 0.11 0.41 0.91 0.10 0.09 0.87 0.23 0.38 0.89 0.10 0.55 0.87 0.08 0.49 0.89 0.82 0.41 0.81 0.57 0.40 0.79 0.60 0.22 0.85 0.68 0.36 0.77 0.87 0.39 0.79 0.62 0.39 0.77 0.68 0.21 0.87
LRcc 0.44 0.62 0.75 0.44 0.68 0.75 0.08 0.68 0.75 0.20 0.68 0.75 0.05 0.16 0.26 0.05 0.68 0.48 0.05 0.16 0.26 0.07 0.43 0.48 0.52 0.71 0.02 0.50 0.70 0.01 0.18 0.22 0.12 0.70 0.58 0.00 0.62 0.68 0.01 0.60 0.68 0.00 0.29 0.16 0.26
DQhit 0.22 0.46 0.91 0.22 0.41 0.91 0.03 0.41 0.91 0.12 0.41 0.91 0.11 0.10 0.87 0.24 0.39 0.89 0.11 0.55 0.87 0.09 0.49 0.89 0.82 0.42 0.81 0.58 0.40 0.79 0.61 0.23 0.85 0.68 0.36 0.77 0.88 0.39 0.79 0.63 0.39 0.77 0.69 0.21 0.87
DQVaR 0.21 0.66 0.03 0.39 0.64 0.03 0.06 0.63 0.03 0.20 0.62 0.03 0.10 0.21 0.03 0.24 0.59 0.01 0.22 0.01 0.03 0.22 0.05 0.24 0.81 0.56 0.97 0.79 0.55 0.96 0.13 0.41 0.92 0.84 0.51 0.96 0.89 0.54 0.96 0.83 0.53 0.96 0.05 0.39 0.00
MCuc 0.73 0.51 0.33 0.73 0.79 0.33 0.89 0.78 0.47 0.38 0.73 0.51 0.06 0.36 0.11 0.03 0.83 0.19 0.08 0.08 0.09 0.15 0.30 0.18 0.25 0.87 0.00 0.31 0.97 0.00 0.09 0.23 0.06 0.47 0.60 0.00 0.33 0.87 0.00 0.37 0.78 0.00 0.13 0.16 0.10
MCind 0.01 0.00 0.32 0.01 0.00 0.33 0.01 0.08 0.34 0.01 0.00 0.62 0.01 0.00 0.15 0.01 0.00 0.26 0.58 0.01 0.70 0.73 0.11 0.87 0.58 0.38 0.02 0.62 0.44 0.01 0.30 0.51 0.04 0.67 0.06 0.03 0.17 0.24 0.01 0.14 0.30 0.02 0.01 0.06 0.11
MCcc 0.02 0.00 0.67 0.02 0.00 0.66 0.01 0.17 0.66 0.02 0.00 0.77 0.02 0.00 0.31 0.02 0.00 0.52 0.85 0.02 0.61 0.53 0.25 0.26 0.85 0.76 0.04 0.78 0.93 0.02 0.62 0.97 0.09 0.66 0.13 0.05 0.34 0.50 0.02 0.27 0.59 0.05 0.01 0.13 0.22

Nikkei - VXJ

Exc. 180 30 6 173 33 5 172 31 7 171 39 6 197 30 7 193 28 7 140 22 6 149 27 6 171 39 10 178 38 7 169 31 3 177 38 7 180 38 9 178 38 7 164 28 6
LRuc 0.53 0.44 0.21 0.93 0.81 0.43 0.99 0.56 0.09 0.95 0.44 0.21 0.05 0.44 0.09 0.10 0.26 0.09 0.01 0.02 0.21 0.07 0.19 0.21 0.97 0.43 0.00 0.61 0.53 0.09 0.85 0.57 0.81 0.67 0.53 0.09 0.51 0.53 0.01 0.61 0.53 0.09 0.56 0.26 0.21
LRind 0.14 0.27 0.01 0.43 0.33 0.00 0.25 0.29 0.01 0.23 0.08 0.01 0.16 0.27 0.01 0.20 0.23 0.01 0.43 0.13 0.01 0.28 0.21 0.01 0.87 0.08 0.02 0.55 0.44 0.01 0.21 0.03 0.00 0.53 0.44 0.01 0.60 0.44 0.02 0.55 0.44 0.01 0.26 0.23 0.01
LRcc 0.28 0.40 0.01 0.73 0.60 0.01 0.51 0.48 0.01 0.49 0.16 0.01 0.06 0.40 0.01 0.12 0.26 0.01 0.03 0.02 0.01 0.10 0.19 0.01 0.99 0.16 0.00 0.74 0.61 0.01 0.44 0.08 0.00 0.75 0.61 0.01 0.70 0.61 0.00 0.74 0.61 0.01 0.45 0.26 0.01
DQhit 0.15 0.27 0.01 0.44 0.33 0.00 0.26 0.29 0.01 0.25 0.08 0.01 0.17 0.27 0.01 0.22 0.23 0.01 0.45 0.13 0.01 0.29 0.21 0.01 0.87 0.08 0.02 0.56 0.44 0.01 0.22 0.03 0.00 0.54 0.44 0.01 0.61 0.44 0.02 0.56 0.44 0.01 0.27 0.23 0.01
DQVaR 0.31 0.46 0.02 0.45 0.53 0.02 0.39 0.49 0.03 0.51 0.18 0.02 0.29 0.43 0.03 0.26 0.39 0.03 0.13 0.00 0.00 0.10 0.01 0.00 0.29 0.16 0.07 0.55 0.56 0.03 0.06 0.08 0.00 0.39 0.57 0.03 0.41 0.55 0.06 0.39 0.57 0.03 0.05 0.40 0.02
MCuc 0.54 0.46 0.18 0.96 0.79 0.49 0.99 0.58 0.08 0.96 0.45 0.25 0.06 0.42 0.08 0.10 0.28 0.11 0.01 0.02 0.17 0.07 0.21 0.19 0.97 0.38 0.00 0.58 0.51 0.08 0.82 0.53 0.97 0.64 0.50 0.05 0.46 0.48 0.01 0.60 0.46 0.07 0.59 0.25 0.21
MCind 0.42 0.78 0.81 0.46 0.50 0.42 0.31 0.42 0.71 0.20 0.50 0.53 0.10 0.45 0.75 0.05 0.50 0.75 0.56 0.38 0.02 0.42 0.40 0.02 0.01 0.87 0.76 0.01 0.91 0.67 0.00 0.07 0.04 0.02 0.91 0.67 0.00 0.88 0.69 0.02 0.91 0.67 0.01 0.08 0.25
MCcc 0.85 0.45 0.38 0.92 1.00 0.84 0.61 0.82 0.59 0.40 0.98 0.94 0.22 0.87 0.50 0.09 0.99 0.49 0.87 0.78 0.04 0.82 0.79 0.04 0.03 0.25 0.48 0.01 0.19 0.68 0.01 0.14 0.08 0.04 0.17 0.68 0.00 0.23 0.63 0.04 0.18 0.68 0.01 0.17 0.50

Nasdaq - VXN

Exc. 137 26 2 141 27 2 127 28 3 133 25 3 157 29 5 157 25 4 140 22 6 121 17 2 121 26 5 123 28 5 110 29 3 122 27 5.00 121 27 5 123 28 5 110 23 2
LRuc 0.99 0.78 0.64 0.74 0.93 0.64 0.37 0.91 0.88 0.71 0.63 0.88 0.09 0.77 0.22 0.09 0.63 0.48 0.01 0.02 0.21 0.15 0.03 0.64 0.17 0.80 0.22 0.23 0.89 0.22 0.02 0.74 0.87 0.20 0.96 0.22 0.17 0.96 0.22 0.23 0.89 0.22 0.02 0.40 0.64
LRind 0.22 0.48 0.96 0.17 0.46 0.96 0.64 0.45 0.94 0.03 0.50 0.94 0.47 0.43 0.89 0.72 0.50 0.91 0.43 0.13 0.01 0.26 0.65 0.96 0.52 0.25 0.89 0.47 0.29 0.89 0.45 0.32 0.94 0.84 0.27 0.89 0.52 0.27 0.89 0.47 0.29 0.89 0.83 0.19 0.96
LRcc 0.47 0.75 0.89 0.37 0.76 0.89 0.59 0.74 0.99 0.10 0.71 0.99 0.18 0.70 0.47 0.22 0.71 0.77 0.03 0.02 0.01 0.18 0.09 0.89 0.31 0.50 0.46 0.38 0.57 0.46 0.04 0.57 0.98 0.43 0.54 0.46 0.31 0.54 0.46 0.38 0.57 0.46 0.05 0.29 0.90
DQhit 0.23 0.48 0.96 0.18 0.47 0.96 0.65 0.45 0.94 0.04 0.50 0.94 0.48 0.43 0.89 0.73 0.50 0.91 0.45 0.13 0.01 0.26 0.65 0.96 0.53 0.25 0.89 0.48 0.30 0.89 0.46 0.32 0.94 0.84 0.27 0.89 0.53 0.27 0.89 0.48 0.30 0.89 0.83 0.19 0.96
DQVaR 0.27 0.03 0.98 0.21 0.03 0.98 0.36 0.00 0.76 0.03 0.10 0.56 0.59 0.03 0.93 0.55 0.09 0.98 0.13 0.00 0.00 0.53 0.90 0.95 0.59 0.39 0.99 0.60 0.44 0.99 0.22 0.52 1.00 0.88 0.42 0.99 0.65 0.41 0.99 0.60 0.44 0.99 0.14 0.35 1.00
MCuc 0.97 0.83 0.85 0.74 0.97 0.77 0.37 0.98 0.85 0.71 0.66 0.98 0.09 0.76 0.23 0.08 0.70 0.43 0.01 0.02 0.17 0.15 0.04 0.81 0.16 0.78 0.22 0.22 0.84 0.17 0.02 0.78 0.59 0.20 0.94 0.24 0.16 0.92 0.18 0.24 0.80 0.14 0.02 0.43 0.73
MCind 0.66 0.40 0.70 0.94 0.33 0.70 0.52 0.24 0.46 0.02 0.03 0.42 0.34 0.00 0.18 0.21 0.00 0.18 0.57 0.39 0.02 0.12 0.06 0.69 0.00 0.00 0.16 0.00 0.00 0.17 0.00 0.03 0.40 0.00 0.00 0.17 0.00 0.01 0.17 0.00 0.00 0.16 0.00 0.07 0.68
MCcc 0.66 0.80 0.62 0.12 0.65 0.62 0.95 0.47 0.92 0.05 0.06 0.82 0.71 0.00 0.35 0.42 0.01 0.36 0.86 0.77 0.04 0.25 0.11 0.63 0.00 0.00 0.34 0.00 0.00 0.34 0.00 0.06 0.77 0.00 0.01 0.35 0.00 0.01 0.34 0.00 0.00 0.34 0.00 0.15 0.63

Table 5: Results (in the form of p-values) for in-sample VaR accuracy for all GARCH, BEGE, univariate and bivariate Hawkes-POT models. Column
headings denote the model at each level of significance α, the rows in each panel denote the test. The number of exceptions observed (Exc.) are also
reported above the test results. All tests with a p-value less than 5% are shown in bold to highlight where the rejections of the accuracy tests are
occurring.
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Returns Statistics
Volatility Models (Out-of-sample) Univariate Hawkes-POT (Out-of-sample) Bivariate Hawkes-POT (Out-of-sample)

GJRGARCH GJRGARCH+IV EGARCH EGARCH+IV GARCH GARCH+IV BEGE BEGE+IV M1 M2 M3 M1 M2 M3 M4

α- level 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999

S&P500 - VIX

Exc. 5 1 0 5 0 0 5 0 0 10 0 0 3 0 0 3 0 0 19 10 4 18 2 0 38 8 1 41 17 2 40 11 1 30 7 1 30 7 1 23 3 1 23 5 1
LRuc 0.00 0.03 0.32 0.00 0.00 0.32 0.00 0.00 0.32 0.00 0.00 0.32 0.00 0.00 0.32 0.00 0.00 0.32 0.19 0.05 0.00 0.13 0.12 0.32 0.02 0.23 0.54 0.00 0.00 0.11 0.01 0.02 0.54 0.35 0.41 0.54 0.35 0.41 0.54 0.63 0.32 0.54 0.63 0.98 0.54
LRind 0.75 0.95 1.00 0.75 1.00 1.00 0.75 1.00 1.00 0.52 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.75 0.52 0.80 0.25 0.90 1.00 0.56 0.61 0.95 0.40 0.28 0.90 0.92 0.48 0.95 0.86 0.66 0.95 0.86 0.66 0.95 0.14 0.85 0.95 0.14 0.75 0.95
LRcc 0.00 0.09 0.61 0.00 0.01 0.61 0.00 0.01 0.61 0.00 0.01 0.61 0.00 0.01 0.61 0.00 0.01 0.61 0.41 0.12 0.01 0.16 0.30 0.61 0.05 0.42 0.83 0.01 0.00 0.28 0.02 0.06 0.83 0.64 0.65 0.83 0.64 0.65 0.83 0.30 0.60 0.83 0.30 0.95 0.83
DQhit 0.76 0.95 1.00 0.76 1.00 1.00 0.76 1.00 1.00 0.53 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.75 0.53 0.80 0.26 0.90 1.00 0.58 0.61 0.95 0.41 0.28 0.90 0.92 0.49 0.95 0.87 0.66 0.95 0.87 0.66 0.95 0.15 0.85 0.95 0.15 0.75 0.95
DQVaR 0.25 0.56 1.00 0.79 1.00 1.00 0.30 1.00 1.00 0.42 1.00 1.00 0.88 1.00 1.00 0.87 1.00 1.00 1.00 1.00 1.00 0.17 0.91 1.00 0.84 0.71 0.99 0.56 0.35 0.98 0.98 0.59 0.98 0.90 0.79 1.00 0.90 0.80 1.00 0.30 0.95 1.00 0.32 0.87 0.99
MCuc 0.00 0.05 0.75 0.00 0.01 0.87 0.00 0.00 0.99 0.00 0.00 0.25 0.00 0.00 0.40 0.00 0.00 0.12 0.19 0.04 0.00 0.15 0.16 1.00 0.01 0.25 0.63 0.00 0.00 0.09 0.00 0.02 0.43 0.33 0.32 0.38 0.37 0.29 0.68 0.69 0.39 0.60 0.72 0.91 0.32
MCind 0.52 0.36 1.00 0.78 1.00 1.00 0.52 1.00 1.00 0.75 1.00 1.00 0.97 1.00 1.00 0.97 1.00 1.00 0.45 0.57 0.88 0.94 0.91 1.00 0.23 0.76 0.91 0.13 0.97 0.68 0.08 0.95 0.91 0.42 0.87 0.91 0.42 0.88 0.90 0.84 0.42 0.91 0.69 0.11 0.91
MCcc 0.97 0.72 1.00 0.45 0.00 0.88 0.96 0.00 1.00 0.53 1.00 0.41 0.06 0.00 0.61 0.06 0.00 1.00 0.88 0.83 0.23 0.12 0.18 1.00 0.45 0.48 0.20 0.26 0.06 0.67 0.16 0.10 0.20 0.87 0.24 0.18 0.87 0.24 0.18 0.34 0.83 0.19 0.61 0.24 0.19

DAX - VDAX

Exc. 18 5 0 19 6 0 20 5 0 24 6 0 21 5 0 22 5 0 18 2 0 21 5 0 27 3 0 29 2 0 29 2 0 30 3 0 29 2 0 29 2 0 22 2 0
LRuc 0.13 0.99 0.32 0.19 0.67 0.32 0.28 0.99 0.32 0.82 0.67 0.32 0.39 0.99 0.32 0.52 0.99 0.32 0.11 0.12 0.31 0.36 0.98 0.31 0.69 0.33 0.32 0.43 0.12 0.32 0.43 0.12 0.32 0.32 0.33 0.32 0.43 0.12 0.32 0.43 0.12 0.32 0.52 0.12 0.32
LRind 0.25 0.75 1.00 0.75 0.70 1.00 0.82 0.75 1.00 0.88 0.70 1.00 0.18 0.75 1.00 0.16 0.75 1.00 0.26 0.90 1.00 0.89 0.75 1.00 0.67 0.85 1.00 0.55 0.90 1.00 0.55 0.90 1.00 0.49 0.85 1.00 0.55 0.90 1.00 0.55 0.90 1.00 0.97 0.90 1.00
LRcc 0.16 0.95 0.61 0.41 0.85 0.61 0.54 0.95 0.61 0.96 0.85 0.61 0.27 0.95 0.61 0.30 0.95 0.61 0.15 0.29 0.60 0.65 0.95 0.60 0.85 0.61 0.61 0.61 0.30 0.61 0.61 0.30 0.61 0.49 0.61 0.61 0.61 0.30 0.61 0.61 0.30 0.61 0.82 0.30 0.61
DQhit 0.26 0.75 1.00 0.75 0.70 1.00 0.82 0.75 1.00 0.89 0.70 1.00 0.19 0.75 1.00 0.17 0.75 1.00 0.26 0.90 1.00 0.89 0.75 1.00 0.68 0.85 1.00 0.56 0.90 1.00 0.56 0.90 1.00 0.51 0.85 1.00 0.56 0.90 1.00 0.56 0.90 1.00 0.97 0.90 1.00
DQVaR 0.41 0.03 1.00 0.58 0.02 1.00 0.76 0.01 1.00 0.91 0.17 1.00 0.39 0.02 1.00 0.36 0.03 1.00 0.52 0.98 1.00 0.74 0.13 1.00 0.17 0.95 1.00 0.27 0.97 1.00 0.27 0.97 1.00 0.22 0.91 1.00 0.26 0.97 1.00 0.27 0.97 1.00 0.20 0.97 1.00
MCuc 0.16 0.90 1.00 0.22 0.66 1.00 0.26 0.89 1.00 0.91 0.74 1.00 0.45 0.94 1.00 0.56 0.98 1.00 0.13 0.17 1.00 0.34 0.87 1.00 0.63 0.43 1.00 0.37 0.10 1.00 0.46 0.22 1.00 0.27 0.35 1.00 0.44 0.12 1.00 0.45 0.17 1.00 0.60 0.16 1.00
MCind 0.94 0.40 1.00 0.89 0.27 1.00 0.86 0.42 1.00 0.60 0.28 1.00 0.83 0.40 1.00 0.75 0.40 1.00 0.43 0.85 1.00 0.81 0.92 1.00 0.40 0.41 1.00 0.31 0.60 1.00 0.31 0.59 1.00 0.25 0.43 1.00 0.32 0.61 1.00 0.30 0.60 1.00 0.79 0.06 1.00
MCcc 0.11 0.79 1.00 0.20 0.53 1.00 0.29 0.87 1.00 0.79 0.54 1.00 0.34 0.80 1.00 0.48 0.81 1.00 0.87 0.31 1.00 0.37 0.16 1.00 0.78 0.82 1.00 0.60 0.81 1.00 0.63 0.80 1.00 0.50 0.84 1.00 0.60 0.80 1.00 0.61 0.80 1.00 0.42 0.11 1.00

DJI - VXD

Exc. 15 1 0 15 1 0 14 2 0 18 1 1 19 2 0 17 0 0 14 1 0 14 1 0 24 3 0 24 3 0 19 2 0 25 3 0 25 3 0 25 3 0 19 2 0
LRuc 0.03 0.03 0.32 0.03 0.03 0.32 0.01 0.12 0.32 0.13 0.03 0.54 0.19 0.12 0.32 0.08 0.00 0.32 0.01 0.03 0.32 0.01 0.03 0.32 0.84 0.33 0.32 0.84 0.33 0.32 0.20 0.13 0.32 0.99 0.33 0.32 0.99 0.33 0.32 0.99 0.33 0.32 0.20 0.13 0.32
LRind 0.34 0.95 1.00 0.34 0.95 1.00 0.37 0.90 1.00 0.67 0.95 0.95 0.22 0.90 1.00 0.27 1.00 1.00 0.37 0.95 1.00 0.37 0.95 1.00 0.88 0.85 1.00 0.88 0.85 1.00 0.75 0.90 1.00 0.52 0.85 1.00 0.52 0.85 1.00 0.52 0.85 1.00 0.75 0.90 1.00
LRcc 0.05 0.09 0.61 0.05 0.09 0.61 0.03 0.30 0.61 0.28 0.09 0.82 0.20 0.30 0.61 0.12 0.01 0.61 0.03 0.09 0.61 0.03 0.09 0.61 0.97 0.62 0.61 0.97 0.62 0.61 0.42 0.31 0.61 0.81 0.62 0.61 0.81 0.62 0.61 0.81 0.62 0.61 0.42 0.31 0.61
DQhit 0.35 0.95 1.00 0.35 0.95 1.00 0.38 0.90 1.00 0.68 0.95 0.95 0.23 0.90 1.00 0.29 1.00 1.00 0.38 0.95 1.00 0.38 0.95 1.00 0.88 0.85 1.00 0.88 0.85 1.00 0.75 0.90 1.00 0.53 0.85 1.00 0.53 0.85 1.00 0.53 0.85 1.00 0.75 0.90 1.00
DQVaR 0.45 0.08 1.00 0.51 0.06 1.00 0.50 0.00 1.00 0.78 0.07 0.08 0.04 0.02 1.00 0.09 1.00 1.00 0.68 0.22 1.00 0.68 0.24 1.00 0.33 0.96 1.00 0.39 0.97 1.00 0.20 0.98 1.00 0.28 0.97 1.00 0.31 0.97 1.00 0.32 0.97 1.00 0.17 0.98 1.00
MCuc 0.02 0.03 1.00 0.04 0.06 1.00 0.02 0.17 1.00 0.16 0.04 0.57 0.23 0.21 1.00 0.09 1.00 1.00 0.02 0.03 1.00 0.01 0.04 1.00 0.87 0.45 1.00 0.80 0.34 1.00 0.18 0.08 1.00 0.99 0.38 1.00 0.96 0.44 1.00 0.96 0.54 1.00 0.18 0.17 1.00
MCind 0.74 0.35 1.00 0.74 0.36 1.00 0.80 0.61 1.00 0.78 0.35 0.36 0.72 0.61 1.00 0.56 0.00 1.00 0.80 0.37 1.00 0.80 0.36 1.00 0.68 0.41 1.00 0.68 0.42 1.00 0.40 0.59 1.00 0.59 0.41 1.00 0.59 0.42 1.00 0.59 0.41 1.00 0.39 0.58 1.00
MCcc 0.53 0.71 1.00 0.53 0.72 1.00 0.40 0.78 1.00 0.44 0.72 0.72 0.56 0.78 1.00 0.87 1.00 1.00 0.43 0.73 1.00 0.40 0.72 1.00 0.62 0.84 1.00 0.63 0.83 1.00 0.79 0.82 1.00 0.83 0.83 1.00 0.82 0.84 1.00 0.84 0.82 1.00 0.80 0.82 1.00

Nikkei - VXJ

Exc. 19 1 1 19 1 1 18 1 1 25 2 1 20 1 1 19 1 1 18 2 1 18 2 1 28 6 1 27 6 1 27 7 1 26 6 1 27 7 1 26 6 1 31 6 1
LRuc 0.19 0.03 0.54 0.19 0.03 0.54 0.13 0.03 0.54 0.98 0.12 0.54 0.28 0.03 0.54 0.19 0.03 0.54 0.15 0.13 0.53 0.15 0.13 0.53 0.50 0.64 0.53 0.63 0.64 0.53 0.63 0.38 0.53 0.78 0.64 0.53 0.63 0.38 0.53 0.78 0.64 0.53 0.21 0.64 0.53
LRind 0.71 0.95 0.95 0.71 0.95 0.95 0.63 0.95 0.95 0.85 0.90 0.95 0.78 0.95 0.95 0.71 0.95 0.95 0.68 0.90 0.95 0.68 0.90 0.95 0.63 0.01 0.95 0.69 0.01 0.95 0.69 0.01 0.95 0.76 0.05 0.95 0.69 0.08 0.95 0.76 0.05 0.95 0.45 0.70 0.95
LRcc 0.40 0.09 0.82 0.40 0.09 0.82 0.28 0.09 0.82 0.98 0.30 0.82 0.54 0.09 0.82 0.40 0.09 0.82 0.33 0.32 0.82 0.33 0.32 0.82 0.71 0.01 0.82 0.82 0.01 0.82 0.82 0.01 0.82 0.92 0.14 0.82 0.82 0.15 0.82 0.92 0.14 0.82 0.34 0.83 0.82
DQhit 0.71 0.95 0.95 0.71 0.95 0.95 0.64 0.95 0.95 0.85 0.90 0.95 0.79 0.95 0.95 0.71 0.95 0.95 0.69 0.90 0.95 0.69 0.90 0.95 0.64 0.01 0.95 0.70 0.01 0.95 0.70 0.01 0.95 0.77 0.06 0.95 0.70 0.08 0.95 0.77 0.06 0.95 0.47 0.70 0.95
DQVaR 0.93 0.71 0.69 0.91 0.75 0.76 0.88 0.66 0.66 0.97 0.30 0.99 0.95 0.96 0.96 0.93 0.96 0.96 0.83 0.52 0.34 0.83 0.52 0.34 0.85 0.02 1.00 0.90 0.02 1.00 0.86 0.03 1.00 0.94 0.15 1.00 0.88 0.21 1.00 0.94 0.15 1.00 0.73 0.87 1.00
MCuc 0.22 0.06 0.49 0.24 0.07 0.64 0.14 0.02 0.58 0.95 0.22 0.28 0.35 0.07 0.68 0.22 0.07 0.60 0.14 0.09 0.72 0.18 0.20 0.66 0.54 0.63 0.22 0.67 0.63 0.66 0.68 0.30 0.66 0.77 0.61 0.51 0.62 0.28 0.41 0.72 0.65 0.46 0.17 0.53 0.27
MCind 0.28 0.30 0.29 0.33 0.30 0.30 0.29 0.30 0.30 0.32 0.25 0.30 0.55 0.30 0.30 0.66 0.31 0.31 0.46 0.26 0.31 0.46 0.26 0.31 0.22 0.25 0.30 0.35 0.25 0.31 0.25 0.25 0.31 0.34 0.10 0.31 0.38 0.51 0.30 0.33 0.10 0.29 0.17 0.17 0.30
MCcc 0.54 0.60 0.59 0.67 0.59 0.60 0.58 0.59 0.60 0.64 0.51 0.61 0.89 0.59 0.61 0.69 0.59 0.61 0.92 0.51 0.60 0.91 0.52 0.60 0.43 0.50 0.62 0.71 0.50 0.63 0.52 0.51 0.62 0.65 0.20 0.60 0.73 0.97 0.61 0.66 0.20 0.61 0.31 0.34 0.61

Nasdaq - VXN

Exc. 28 9 1 28 9 0 34 11 4 31 16 2 31 11 2 31 11 2 13.00 1.00 0.00 18.00 2.00 0.00 25 3 0 26 5 0 22 2 0 26 5 0 26 5 0 26 5 0 24 6 0
LRuc 0.56 0.11 0.54 0.56 0.11 0.32 0.08 0.02 0.00 0.24 0.00 0.11 0.24 0.02 0.11 0.24 0.02 0.11 0.01 0.03 0.32 0.13 0.12 0.32 0.89 0.36 0.32 0.73 0.95 0.32 0.62 0.14 0.32 0.73 0.95 0.32 0.73 0.95 0.32 0.73 0.95 0.32 0.94 0.62 0.32
LRind 0.07 0.57 0.95 0.07 0.57 1.00 0.30 0.48 0.80 0.04 0.30 0.90 0.44 0.48 0.90 0.44 0.48 0.90 0.34 0.95 1.00 0.67 0.90 1.00 0.82 0.85 1.00 0.75 0.75 1.00 0.96 0.90 1.00 0.75 0.75 1.00 0.75 0.75 1.00 0.75 0.75 1.00 0.89 0.70 1.00
LRcc 0.16 0.23 0.82 0.16 0.23 0.61 0.13 0.05 0.01 0.07 0.00 0.28 0.38 0.05 0.28 0.38 0.05 0.28 0.02 0.09 0.61 0.28 0.30 0.61 0.97 0.64 0.61 0.90 0.95 0.61 0.88 0.33 0.61 0.90 0.95 0.61 0.90 0.95 0.61 0.90 0.95 0.61 0.99 0.82 0.61
DQhit 0.08 0.57 0.95 0.08 0.57 1.00 0.32 0.48 0.80 0.05 0.31 0.90 0.46 0.48 0.90 0.46 0.48 0.90 0.35 0.95 1.00 0.68 0.90 1.00 0.83 0.85 1.00 0.76 0.75 1.00 0.96 0.90 1.00 0.76 0.75 1.00 0.76 0.75 1.00 0.76 0.75 1.00 0.90 0.70 1.00
DQVaR 0.06 0.25 0.99 0.06 0.26 1.00 0.29 0.06 0.88 0.14 0.52 0.92 0.51 0.37 0.88 0.51 0.39 0.88 0.27 0.90 1.00 0.37 0.93 1.00 0.18 0.95 1.00 0.15 0.90 1.00 0.19 0.97 1.00 0.14 0.87 1.00 0.14 0.89 1.00 0.15 0.90 1.00 0.26 0.83 1.00
MCuc 0.50 0.09 0.22 0.60 0.08 0.13 0.07 0.01 0.00 0.22 0.00 0.03 0.21 0.03 0.05 0.24 0.03 0.18 0.01 0.08 1.00 0.11 0.25 1.00 0.90 0.53 1.00 0.72 0.73 1.00 0.72 0.11 1.00 0.64 0.91 1.00 0.78 0.98 1.00 0.76 0.86 1.00 0.98 0.44 1.00
MCind 0.27 0.08 0.21 0.28 0.09 0.00 0.25 0.04 0.67 0.35 0.22 0.70 0.19 0.10 0.11 0.18 0.10 0.11 0.84 0.50 0.00 0.84 0.78 0.00 0.67 0.19 1.00 0.75 0.96 1.00 0.48 0.56 1.00 0.74 0.96 1.00 0.74 0.96 1.00 0.74 0.96 1.00 0.49 0.38 1.00
MCcc 0.56 0.17 0.41 0.57 0.17 0.00 0.51 0.08 0.65 0.71 0.45 0.60 0.37 0.19 0.24 0.36 0.18 0.23 0.32 0.99 1.00 0.31 0.44 1.00 0.68 0.37 1.00 0.52 0.09 1.00 0.97 0.85 1.00 0.52 0.09 1.00 0.52 0.09 1.00 0.51 0.08 1.00 0.97 0.74 1.00

Table 6: Results (in the form of p-values) for out-of-sample VaR accuracy for all GARCH, BEGE, univariate and bivariate Hawkes-POT models.
Column headings denote the model at each level of significance α, the rows in each panel denote the test. The number of exceptions observed (Exc.)
are also reported above the test results. All tests with a p-value less than 5% are shown in bold to highlight where the rejections of the accuracy
tests are occurring.
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S&P500 - VIX DAX - VDAX DJI - VXD Nikkei - VXJ Nasdaq - VXN

α-level 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999

Uni. Hawkes-POT
Model 1 * * * * * * * * * *
Model 2 * * * * * * * * * * * *
Model 3 * * * * * * * * *

Biv. Hawkes-POT

Model 1 * * * * * * * * * * * *
Model 2 * * * * * * * * * * * * * *
Model 3 * * * * * * * * * * * * * *
Model 4 * * * * * * * *

Volatility Models

GJRGARCH * * * * * * *
GJRGARCH+IV * * * * * * *

EGARCH * * * * *
EGARCH+IV * * * * * *

GARCH * * * * *
GARCH+IV * * * * *

BEGE * * * * * * * *
BEGE+IV * * * * * * *

Table 7: MCS results for comparing VaR forecast performance based on the asymmetric quantile
loss function in equation 24, at each VaR level. The MCS results are based on a level of
significance of αM = 5%, with an * indicating that the model is a member of the final MCS.

S&P500 - VIX DAX - VDAX DJI - VXD Nikkei - VXJ Nasdaq - VXN

α-level 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999 0.95 0.99 0.999
VaR for h = 5

Uni. Hawkes-POT

Model 1 31 1 0 30 1 0 34 1 0 35 2 0 34 5 0
(0.22) (0.03) (0.32) (0.33) (0.03) (0.32) (0.07) (0.03) (0.32) (0.05) (0.13) (0.32) (0.05) (0.94) (0.33)

Model 2 29 2 0 31 2 0 33 1 0 38 1 0 36 5 0
(0.40) (0.13) (0.32) (0.24) (0.12) (0.32) (0.10) (0.03) (0.32) (0.01) (0.03) (0.32) (0.02) (0.94) (0.33)

Model 3 9 0 0 23 1 0 27 2 0 32 2 0 26 3 0
(0.00) (0.00) (0.32) (0.66) (0.03) (0.32) (0.65) (0.13) (0.32) (0.15) (0.13) (0.32) (0.70) (0.37) (0.33)

Biv. Hawkes-POT

Model 1 29 2 0 34 6 0 33 1 0 35 2 0 37 6 0
(0.40) (0.13) (0.32) (0.05) (0.67) (0.32) (0.10) (0.03) (0.32) (0.05) (0.13) (0.32) (0.01) (0.61) (0.33)

Model 2 29 2 0 34 6 0 33 2 0 35 2 0 36 5 0
(0.40) (0.13) (0.32) (0.05) (0.67) (0.32) (0.10) (0.13) (0.32) (0.05) (0.13) (0.32) (0.02) (0.94) (0.33)

Model 3 31 2 0 34 6 0 34 1 0 42 2 0 37 5 0
(0.22) (0.13) (0.32) (0.05) (0.67) (0.32) (0.07) (0.03) (0.32) (0.00) (0.13) (0.32) (0.01) (0.94) (0.30)

Model 4 16 2 0 23 2 0 27 2 0 38 3 0 27 3 0
(0.05) (0.13) (0.32) (0.66) (0.12) (0.32) (0.65) (0.13) (0.32) (0.01) (0.34) (0.32) (0.56) (0.37) (0.33)

VaR for h = 10

Uni. Hawkes-POT

Model 1 19 1 0 20 0 0 30 1 0 36 3 0 24 3 0
(0.23) (0.03) (0.32) (0.30) (0.00) (0.32) (0.27) (0.03) (0.32) (0.03) (0.35) (0.32) (0.98) (0.38) (0.33)

Model 2 19 1 0 21 0 0 30 1 0 37 3 0 24 3 0
(0.23) (0.03) (0.32) (0.42) (0.00) (0.32) (0.27) (0.03) (0.32) (0.02) (0.35) (0.32) (0.98) (0.38) (0.33)

Model 3 8 1 0 15 0 0 24 2 0 36 0 0 18 2 0
(0.00) (0.03) (0.32) (0.03) (0.00) (0.32) (0.92) (0.13) (0.32) (0.03) (0.00) (0.32) (0.2) (0.15) (0.33)

Biv. Hawkes-POT

Model 1 18 1 0 31 1 0 30 1 0 36 3 0 23 5 0
(0.15) (0.03) (0.32) (0.22) (0.03) (0.32) (0.27) (0.03) (0.32) (0.03) (0.35) (0.32) (0.85) (0.92) (0.33)

Model 2 18 1 0 31 1 0 32 2 0 36 3 0 24 3 0
(0.15) (0.03) (0.32) (0.22) (0.03) (0.32) (0.14) (0.13) (0.32) (0.03) (0.35) (0.32) (0.98) (0.38) (0.33)

Model 3 8 1 0 31 1 0 33 1 0 41 6 0 24 3 0
(0.00) (0.03) (0.32) (0.22) (0.03) (0.32) (0.09) (0.03) (0.32) (0.00) (0.63) (0.32) (0.98) (0.38) (0.33)

Model 4 12 1 0 16 1 0 25 2 0 40 2 0 18 2 0
(0.00) (0.03) (0.32) (0.05) (0.03) (0.32) (0.92) (0.13) (0.32) (0.00) (0.14) (0.32) (0.20) (0.15) (0.33)

Expected 25.10 5.02 0.50 25.35 5.07 0.51 25.00 5.00 0.50 25.00 5.00 0.50 24.40 4.88 0.49

Shape ξ̂u 0.476 0.436 0.468 0.375 0.388

Table 8: Results (in the form of p-values) for the LRuc test of VaR adequacy based on h = 5
and h = 10 day ahead forecasts. All tests with a p-value less than 5% are shown in bold to
highlight where the rejections of the accuracy tests are occurring.
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