# Point process models for extreme returns: Harnessing implied volatility

Rodrigo Herrera

Universidad de Talca

Centro de Investigación en Economía Aplicada (CIEA)

joint work with

Adam Clements (Queensland University of Technology) National Centre for Econometric Research (NCER)

### Introduction

- · Clustering of extreme events
- · Reliable risk measures[BCBS, 2012]





Let the tail speak for itself!

### Motivation

- The CBOE Volatility Index® (IV) is a key measure of market expectations of near-term volatility conveyed by S&P 500 stock index option prices (The VIX).
- Since its introduction in 1993, IV has been considered by many to be the world's premier barometer of investor sentiment and market volatility.





### Motivation

- The CBOE Volatility Index® (IV) is a key measure of market expectations of near-term volatility conveyed by S&P 500 stock index option prices (The VIX).
- Since its introduction in 1993, IV has been considered by many to be the world's premier barometer of investor sentiment and market volatility.





### Financial extreme events features

#### Summary:

- · Extremes appear in clusters
- · Excess over a high threshold highly correlated
- · Inter-exceedance times are correlated
- Relationship between size of the exceedances and last elapsed inter-exceedance times
- · IV indices are negatively correlated with stock market indices



# Contribution

#### **Research Questions :**

- 1. How do extreme shocks in an IV index relate to extreme events in its respective stock market return?
- 1. How can the occurrence and intensity of extreme events in IV indices influence the dynamic behavior on stock market returns and vice versa?



#### 7 | 33

# Contribution

Approach : Utilise IV within intensity based point process models for extreme returns.

- Model 1: IV as an exogenous variable influencing the intensity and the size distribution of extreme events.
- Model 2. Extreme movements in IV are treated as events themselves, with their impact on extreme events in equity returns captured through a bivariate Hawkes model.
- $\implies$  Forecasting extreme losses within a Value-at-Risk framework.
- The benchmark  $\Longrightarrow$  IV within the GARCH-EVT framework.

#### Features

- · Temporal clustering of both the occurrence of extremes and the size thereof
- · Cross-sectional feedback between individual exceedance intensities and
- · Feedback between the magnitude of exceedances and their intensity.

### **Date Description**

 The data consists of daily returns for the S&P 500, Nasdaq, DAX 30, Dow Jones and Nikkei stock market indices, and their respective IV indices. Aall series ending December 31, 2013

# Outline

Literature Review

Methodology Conditional intensity models Conditional mean and volatility models

Generating and evaluating forecasts conditional risk measures

Empirical results Forecasting risk



# Outline

### Literature Review

Methodology Conditional intensity models Conditional mean and volatility models

Generating and evaluating forecasts conditional risk measures

Empirical results Forecasting risk



# Literature Review

#### IV indices are an important measure of short-term expected risk

- Blair et al. [2001], Poon and Granger [2003] IV as an exogenous variable in GARCH models ⇒ beneficial in terms of forecasting.
- Becker et al. [2009] IV contain useful information about future jump activity in returns ⇒reflect extreme movements in prices.
- Hilal et al. [2011] conditional approach for extremal dependence between daily returns on VIX futures and S&P500 >>> VIX futures returns are very sensitive to stock market downside risk.
- Peng and Ng [2012] cross-market dependence of five of the most important equity markets and their corresponding volatility indices ⇒ existence of an asymmetric tail dependence.
- Aboura and Wagner [2014] dependence between S&P 500 index returns and VIX index changes => existence of a contemporaneous volatility-return tail dependence for (-) extreme events though not for (+) returns.



# Outline

Literature Review

### Methodology

Conditional intensity models Conditional mean and volatility models

Generating and evaluating forecasts conditional risk measures

Empirical results Forecasting risk



# Univariate Hawkes-POT model

#### **Basic setting**

- Let  $\{(X_t, Y_t)\}_{t \ge 1}$  be a vector of r.v that represent the log-returns of a stock market index and the associated IV index.
- Define a finite subset of observations  $\{(T_i, W_i, Z_i)\}_{i \ge 1}$ , where:
- $\implies$   $T_i$  corresponds to occurrence times
- $\implies$   $W_i$  magnitude of exceedances higher then u > 0 ( $W_i := X_{T_i} u$ )
- $\Longrightarrow$   $Z_i$  the covariate obtained from the IV index ( $Z_i := Y_{T_i}$ )
  - A Marked Point Process (MPP)  $N(t) := N(0,t] = \sum_{i \ge 1} \mathbb{1} \{T_i \le t, W_i = w\}$  with past history or natural filtration  $\mathscr{H}_t = \{(T_i, W_i, Z_i) | \forall i : T_i < t\}$

$$\lambda(t, w \mid \mathcal{H}_t) = \lambda_g(t \mid \mathcal{H}_t)g(w \mid \mathcal{H}_t, t), \qquad (1)$$



# Univariate Hawkes-POT model

The conditional intensity is characterized by the branching structure of a Hawkes
 process

$$\lambda_g(t \mid \mathscr{H}_t) = \mu + \eta \sum_{i:t_i < t} e^{\delta w_i + \rho z_i} \gamma e^{-\gamma(t - t_i)}, \tag{2}$$

 Motivated by the Pickands–Balkema–de Haan's theorem, the extreme losses are assumed to follow a conditional Generalized Pareto Distribution (GPD)

$$g(w \mid \mathscr{H}_{t}, t) = \begin{cases} \frac{1}{\beta(w \mid \mathscr{H}_{t}, t)} \left( 1 + \xi \frac{w}{\beta(w \mid \mathscr{H}_{t}, t)} \right)^{-1/\xi - 1} &, \quad \xi \neq 0\\ \frac{1}{\beta(w \mid \mathscr{H}_{t}, t)} \exp\left( -\frac{w}{\beta(w \mid \mathscr{H}_{t}, t)} \right) &, \quad \xi = 0, \end{cases}$$
(3)

where  $\xi$  is the shape parameter and  $\beta(w \mid \mathscr{H}_t, t)$  is a scale parameter specified as a self-exciting function

$$\beta(w \mid \mathscr{H}_t, t) = \beta_0 + \beta_1 \sum_{i: t_i < t} e^{\delta w_i + \rho z_i} \gamma e^{-\gamma(t-t_i)}.$$



# Bivariate Hawkes-POT model

#### **Basic setting**

- Let  $\{(X_t, Y_t)\}_{t \ge 1}$  be a vector of r.v that represent the log-returns of a stock market index and the associated IV index.
- MPP is defined as a vector of point processes  $\mathbf{N}(t)$  :  $\{N_{1}(t), N_{2}(t)\}$

 $\Longrightarrow N_1(t)$  is defined through the pairs  $\{(T_i^1, W_i)\}_{i \ge 1}$ ; the subset of extreme events in the log-returns of the stock market occurring at time  $T_i^1$  over a high threshold  $u_1 > 0$ , with  $W_i := X_{T_i^1} - u_1$ .

 $\implies N_2(t)$  is defined by the pairs of events  $\{(T_i^2, Z_i)\}_{i \ge 1}$  with  $Z_i := Y_{T_i^2} - u_2$ , which also characterizes the subset of extreme events occurring in IV at time  $T_i^2$  over a high threshold  $u_2 > 0$ .

•  $\mathscr{H}_{t} = \left\{ \left(T_{i}^{1}, W_{i}\right), \left(T_{j}^{2}, Z_{j}\right) \ \forall i, j : T_{i}^{1} < t \land T_{j}^{2} < t \right\}$  denotes the combined history over all times and marks



# Bivariate Hawkes-POT model

• This bivariate MPP includes a bivariate ground process  $N_k^g(t) := \sum_{i \ge 1} \mathbbm{1} \left\{ T_i^k \le t \right\}$  with conditional intensity

$$\lambda_{g}^{1}(t \mid \mathscr{H}_{t}) = \mu_{1} + \eta_{11} \sum_{i:t_{i}^{1} < t} e^{\delta_{w_{i}}} \gamma_{1} e^{-\gamma_{1}(t-t_{i}^{1})} + \eta_{12} \sum_{i:t_{i}^{2} < t} e^{\rho_{z_{i}}} \gamma_{2} e^{-\gamma_{2}(t-t_{i}^{2})}$$
(4)  
$$\lambda_{g}^{2}(t \mid \mathscr{H}_{t}) = \mu_{2} + \eta_{21} \sum_{i:t_{i}^{1} < t} e^{\delta_{w_{i}}} \gamma_{1} e^{-\gamma_{1}(t-t_{i}^{1})} + \eta_{22} \sum_{i:t_{i}^{2} < t} e^{\rho_{z_{i}}} \gamma_{2} e^{-\gamma_{2}(t-t_{i}^{2})}$$

• Similar to the univariate MPP we also consider a generalized Pareto density for the stock market returns as in (3), but with conditional scale parameter

$$\beta(w \mid \mathscr{H}_{t}, t) = \beta_{0} + \beta_{1} \sum_{i:t_{i}^{1} < t} e^{\delta w_{i}} \gamma_{1} e^{-\gamma_{1}\left(t - t_{i}^{1}\right)} + \beta_{12} \sum_{i:t_{i}^{2} < t} e^{\rho_{z_{i}}} \gamma_{2} e^{-\gamma_{2}\left(t - t_{i}^{2}\right)}.$$
 (5)



# Conditional mean and volatility models

The conditional mean of the equity market returns is specified as an Auto Regressive Moving Average (ARMA) process

$$r_t = \mu + \sum_{i=1}^m a_i r_{t-i} + \sum_{j=1}^n b_j \varepsilon_{t-j} + \varepsilon_t.$$
(6)

Where  $r_t$  denotes the return on a stock market index at time t,  $\mu$  the mean,  $a_i$  and  $b_j$  describe the autoregressive and moving average coefficients, respectively and  $\varepsilon_t$  denotes the residual term. The residuals are defined by

$$\varepsilon_t = \eta_t \sqrt{h_t}, \qquad \eta_t \sim iid(0,1),$$
(7)

where  $\eta_t$  is the standardized residual and  $h_t$  is the conditional variance.



# Conditional mean and volatility models

The GARCH specifications considered for the conditional variances which include IV as an exogenous variable are

$$GARCH(1,1):$$

$$h_{t} = \omega + \alpha \varepsilon_{t-1}^{2} + \beta h_{t-1} + \gamma I V_{t-1}$$

$$GJR-GARCH(1,1):$$

$$h_{t} = \omega + \alpha \varepsilon_{t-1}^{2} + \delta \max(0, -\varepsilon_{t-1})^{2} + \beta h_{t-1} + \gamma I V_{t-1}$$

$$EGARCH(1,1):$$

$$\ln h_{t} = \omega + \alpha \varepsilon_{t-1} + \delta(|\varepsilon_{t-1}| - E|\varepsilon_{t-1}|) + \beta \ln h_{t-1} + \gamma \ln I V_{t-1}.$$
(10)

These three conditional volatility specifications are estimated under the following two alternative distributions, namely Student-t and Skew Student-t.



# Outline

Literature Review

Methodology Conditional intensity models Conditional mean and volatility models

#### Generating and evaluating forecasts conditional risk measures

Empirical results Forecasting risk



### Conditional risk measures

#### **GARCH-EVT Models**

• The corresponding VaR at the  $\alpha$  confidence level of the assumed distribution of the residuals  $\eta_t$ , i.e.,  $VaR_{\alpha}(\eta_t)$ : inf  $\{x \in \mathbb{R} : P(\eta_t > x) \le 1 - \alpha\}$ 

$$VaR_{\alpha}^{\iota} = \mu_{t-1} + VaR_{\alpha}(\eta)\sigma_{t-1},$$
  
where  $\mu_{t-1} = \mu + \sum_{i=1}^{m} a_{i}r_{t-i}$  and  $\sigma_{t-1} = \sum_{j=1}^{n} b_{j}\sqrt{h_{t-j}} + \sqrt{h_{t}}.$ 

#### Hawkes-POT Models

• A prediction of the VaR in the next instant at the  $\alpha$  confidence level is given by

$$\operatorname{VaR}_{\alpha}^{t_{i+1}} = u + \frac{\beta\left(w \mid \mathscr{H}_{t}\right)}{\xi} \left\{ \left(\frac{\lambda_{g}(t_{i+1} \mid \mathscr{H}_{t})}{1 - \alpha}\right)^{\xi} - 1 \right\}.$$



# Outline

Literature Review

Methodology Conditional intensity models Conditional mean and volatility models

Generating and evaluating forecasts conditional risk measures

Empirical results

Forecasting risk



# Empirical results

| Data      | Model | ц       | n       | α       | δ       | 0       | Bo      | B <sub>1</sub> | Ĕ       | Log. like | AIC      |
|-----------|-------|---------|---------|---------|---------|---------|---------|----------------|---------|-----------|----------|
|           | 1     | 0.031   | 0.386   | 0.046   | 27 660  | 5 351   | 0.004   | 0.017          | -0.097  | 446 904   | -877 807 |
| 500 - VIX |       | (0.005) | (0.049) | (0.008) | (3 408) | (2 006) | (0.001) | (0.002)        | (0.034) | 110.001   | 011.001  |
|           | 2     | 0.033   | -0 449  | 0.054   | 32 389  | (2.000) | 0.004   | 0.019          | -0.092  | 443 718   | -873 435 |
|           | 2     | (0.005) | (0.050) | (0.009) | (2 944) |         | (0.004) | (0.002)        | (0.035) | 440.710   | 070.400  |
| a<br>L    | 3     | 0.021   | 0.704   | 0.000)  | (2.344) |         | 0.001   | 0.002)         | 0.033)  | 410 805   | -809 609 |
| S         | 5     | (0.021  | (0.054) | (0.006) |         |         | (0.004) | (0.003)        | (0.038) | 410.000   | -003.003 |
|           |       | (0.004) | (0.034) | (0.000) |         |         | (0.001) | (0.003)        | (0.000) |           |          |
|           | 1     | 0.044   | 0.250   | 0.073   | 43 010  | 1 655   | 0.005   | 0.016          | -0 170  | 333 364   | -650 727 |
| - VDAX    | '     | (0.005) | (0.046) | (0.010) | (4.257) | (1.026) | (0.003  | (0.002)        | (0.022) | 000.004   | -030.727 |
|           | 2     | 0.003)  | 0.204   | 0.074   | (4.207) | (1.020) | 0.005   | 0.003)         | 0.190   | 222.005   | 650 170  |
|           | 2     | 0.044   | 0.294   | 0.074   | 43.319  |         | 0.005   | 0.010          | -0.160  | 332.065   | -650.170 |
| X         |       | (0.005) | (0.045) | (0.010) | (4.076) |         | (0.001) | (0.003)        | (0.034) |           |          |
| ð         | 3     | 0.027   | 0.736   | 0.050   |         |         | 0.004   | 0.042          | -0.034  | 292.604   | -573.208 |
|           |       | (0.005) | (0.057) | (0.007) |         |         | (0.001) | (0.004)        | (0.035) |           |          |
|           |       |         |         |         |         | 0.007   | 0.005   |                |         | 150.000   | 005 0 40 |
| ~         | 1     | 0.060   | 0.164   | 0.066   | 22.564  | 2.927   | 0.005   | 0.023          | -0.101  | 150.623   | -285.246 |
| Š         |       | (0.009) | (0.067) | (0.012) | (5.068) | (0.906) | (0.001) | (0.004)        | (0.050) |           |          |
| <u>.</u>  | 2     | 0.060   | 0.207   | 0.078   | 31.455  |         | 0.004   | 0.025          | -0.029  | 146.767   | -279.534 |
| e e       |       | (0.009) | (0.072) | (0.016) | (4.118) |         | (0.001) | (0.004)        | (0.040) |           |          |
| Ē         | 3     | 0.034   | 0.630   | 0.047   |         |         | 0.004   | 0.038          | 0.133   | 121.026   | -230.052 |
|           |       | (0.008) | (0.093) | (0.012) |         |         | (0.001) | (0.007)        | (0.059) |           |          |

Table: Estimates of the univariate Hawkes-POT models used for the analysis of the cluster behavior for extreme events of negative log-returns in stock markets and positive level-changes in IV indices. Standard errors are in parenthesis. Log.like corresponds to the log-likelihood CLEA model. AIC is the Akaike Information Criterion.



# Empirical results

| Data      | Model | $\mu_1$ | $\eta_{11}$ | $\eta_{12}$ | $\alpha_1$ | δ       | $\mu_2$ | $\eta_{21}$ | $\eta_{22}$ | $\alpha_2$ | ρ       | $\beta_0$ | $\beta_1$ | $\beta_{12}$ | ξ       | log. like | AIC     |
|-----------|-------|---------|-------------|-------------|------------|---------|---------|-------------|-------------|------------|---------|-----------|-----------|--------------|---------|-----------|---------|
| -500 -VIX | 1     | 0.034   | 0.445       | 0.000       | 0.054      | 32.647  | 0.065   | 0.025       | 0.318       | 0.031      | 0.001   | 0.004     | 0.019     | 0.001        | -0.093  | -1461.07  | 2950.14 |
|           |       | (0.005) | (0.050)     | (0.003)     | (0.008)    | (2.933) | (0.010) | (0.017)     | (0.118)     | (0.014)    | (0.002) | (0.001)   | (0.002)   | (0.001)      | (0.035) |           |         |
|           | 2     | 0.034   | 0.445       | 0.000       | 0.054      | 32.647  | 0.065   | 0.025       | 0.318       | 0.031      |         | 0.004     | 0.019     |              | -0.093  | -1461.07  | 2946.14 |
|           |       | (0.005) | (0.050)     | (0.003)     | (0.008)    | (2.933) | (0.010) | (0.017)     | (0.118)     | (0.014)    |         | (0.000)   | (0.002)   |              | (0.035) |           |         |
| Š         | 3     | 0.020   | 0.803       | 0.000       | 0.035      |         | 0.063   | 0.000       | 0.378       | 0.029      |         | 0.003     | 0.023     | 0.019        | 0.035   | -1491.98  | 3007.96 |
|           |       | (0.004) | (0.055)     | (0.005)     | (0.006)    |         | (0.010) | (0.002)     | (0.099)     | (0.010)    |         | (0.001)   | (0.005)   | (0.009)      | (0.037) |           |         |
|           |       |         |             |             |            |         |         |             |             |            |         |           |           |              |         |           |         |
|           | 1     | 0.000   | 0.180       | 0.643       | 0.094      | 49.785  | 0.041   | 0.023       | 0.577       | 0.004      | 0.002   | 0.006     | 0.015     | 0.001        | -0.192  | -1357.04  | 2742.08 |
| VDAX      |       | (0.007) | (0.039)     | (0.070)     | (0.013)    | (4.593) | (0.010) | (0.014)     | (0.093)     | (0.001)    | (0.001) | (0.001)   | (0.002)   | (0.001)      | (0.034) |           |         |
|           | 2     | 0.000   | 0.180       | 0.644       | 0.094      | 49.785  | 0.041   | 0.023       | 0.577       | 0.004      |         | 0.006     | 0.015     |              | -0.192  | -1357.04  | 2738.08 |
| ×         |       | (0.007) | (0.040)     | (0.110)     | (0.013)    | (4.604) | (0.011) | (0.015)     | (0.126)     | (0.001)    |         | (0.001)   | (0.002)   |              | (0.034) |           |         |
| PA        | 3     | 0.017   | 0.699       | 0.137       | 0.042      |         | 0.051   | 0.001       | 0.493       | 0.039      |         | 0.003     | 0.037     | 0.017        | -0.055  | -1476.20  | 2976.40 |
|           |       | (0.007) | (0.068)     | (0.089)     | (0.009)    |         | (0.010) | (0.061)     | (0.116)     | (0.014)    |         | (0.001)   | (0.005)   | (0.008)      | (0.039) |           |         |
|           |       |         |             |             |            |         |         |             |             |            |         |           |           |              |         |           |         |
| _         | 1     | 0.057   | 0.168       | 0.068       | 0.080      | 33.449  | 0.066   | 0.019       | 0.318       | 0.066      | 0.003   | 0.005     | 0.023     | 0.001        | -0.033  | -1059.58  | 2147.16 |
| kei - VXJ |       | (0.010) | (0.079)     | (0.034)     | (0.017)    | (4.860) | (0.009) | (0.013)     | (0.096)     | (0.024)    | (0.001) | (0.001)   | (0.004)   | (0.001)      | (0.040) |           |         |
|           | 2     | 0.057   | 0.168       | 0.068       | 0.080      | 33.449  | 0.066   | 0.019       | 0.318       | 0.066      |         | 0.005     | 0.023     |              | -0.033  | -1059.58  | 2143.16 |
|           |       | (0.010) | (0.079)     | (0.034)     | (0.017)    | (4.860) | (0.009) | (0.013)     | (0.096)     | (0.024)    |         | (0.001)   | (0.004)   |              | (0.040) |           |         |
| Ż         | 3     | 0.013   | 0.712       | 0.135       | 0.021      |         | 0.068   | 0.000       | 0.322       | 0.082      |         | 0.003     | 0.022     | 0.030        | 0.113   | -1076.99  | 2177.98 |
|           |       | (0.010) | (0.097)     | (0.069)     | (0.007)    |         | (0.008) | (0.001)     | (0.079)     | (0.019)    |         | (0.001)   | (0.008)   | (0.008)      | (0.055) |           |         |

Table: Estimates of the bivariate Hawkes-POT models used for the analysis of the cluster behavior for extreme events of negative log-returns in stock markets and positive level-changes in IV indices, ending in December 31, 2012. Standard errors are in parenthesis.



Univariate Hawkes Model I:  $\lambda_g(t \mid \mathscr{H}_t) = \mu + \eta \sum_{i:t_i < t} \gamma e^{-\gamma(t-t_i)}$ 





Univariate Hawkes Model II:  $\lambda_g(t \mid \mathscr{H}_t) = \mu + \eta \sum_{i:t_i < t} e^{\delta_{W_i}} \gamma e^{-\gamma(t-t_i)}$ 



FEN UTALCA

Univariate Hawkes Model III:  $\lambda_g(t \mid \mathscr{H}_t) = \mu + \eta \sum_{i:t_i < t} e^{\delta w_i + \rho z_i} \gamma e^{-\gamma(t-t_i)}$ 





### Bivariate Hawkes Model I:





### Bivariate Hawkes Model II:



CIEA Centro de Investigación en Economia Aplicada

### Bivariate Hawkes Model III:





# VaR Forecasting

|                      |       |      | 5    | S&P500 -V | /IX  |       | DAX - VDAX |      |       |      |       |  |
|----------------------|-------|------|------|-----------|------|-------|------------|------|-------|------|-------|--|
|                      | α     | Exc. | LRuc | LRind     | LRcc | DQhit | Exc.       | LRuc | LRind | LRcc | DQhit |  |
| EGARCH+IV            | 0.95  | 10   | 0.00 | 0.52      | 0.00 | 0.53  | 25         | 1.00 | 0.16  | 0.36 | 0.17  |  |
|                      | 0.99  | 0    | 0.00 | 1.00      | 0.01 | 1.00  | 5          | 1.00 | 0.75  | 0.95 | 0.75  |  |
|                      | 0.999 | 0    | 0.32 | 1.00      | 0.61 | 1.00  | 0          | 0.32 | 1.00  | 0.61 | 1.00  |  |
| Hawkes-POT (M1)      | 0.95  | 15   | 0.03 | 0.34      | 0.05 | 0.35  | 16         | 0.05 | 0.30  | 0.08 | 0.32  |  |
|                      | 0.99  | 2    | 0.12 | 0.90      | 0.30 | 0.90  | 3          | 0.33 | 0.85  | 0.61 | 0.85  |  |
|                      | 0.999 | 0    | 0.32 | 1.00      | 0.61 | 1.00  | 0          | 0.32 | 1.00  | 0.61 | 1.00  |  |
| Hawkes-POT (M2)      | 0.95  | 15   | 0.03 | 0.34      | 0.05 | 0.35  | 16         | 0.05 | 0.30  | 0.08 | 0.32  |  |
|                      | 0.99  | 2    | 0.12 | 0.90      | 0.30 | 0.90  | 3          | 0.33 | 0.85  | 0.61 | 0.85  |  |
|                      | 0.999 | 0    | 0.32 | 1.00      | 0.61 | 1.00  | 0          | 0.32 | 1.00  | 0.61 | 1.00  |  |
| Hawkes-POT (M3)      | 0.95  | 15   | 0.03 | 0.34      | 0.05 | 0.35  | 13         | 0.01 | 0.40  | 0.02 | 0.42  |  |
|                      | 0.99  | 2    | 0.12 | 0.90      | 0.30 | 0.90  | 3          | 0.33 | 0.85  | 0.61 | 0.85  |  |
|                      | 0.999 | 0    | 0.32 | 1.00      | 0.61 | 1.00  | 0          | 0.32 | 1.00  | 0.61 | 1.00  |  |
| Biv. Hawkes-POT (M1) | 0.95  | 18   | 0.13 | 0.25      | 0.16 | 0.26  | 20         | 0.28 | 0.20  | 0.24 | 0.21  |  |
|                      | 0.99  | 1    | 0.03 | 0.95      | 0.09 | 0.95  | 3          | 0.33 | 0.85  | 0.61 | 0.85  |  |
|                      | 0.999 | 0    | 0.32 | 1.00      | 0.61 | 1.00  | 0          | 0.32 | 1.00  | 0.61 | 1.00  |  |
| Biv. Hawkes-POT (M2) | 0.95  | 19   | 0.20 | 0.22      | 0.20 | 0.23  | 20         | 0.28 | 0.20  | 0.24 | 0.21  |  |
|                      | 0.99  | 3    | 0.33 | 0.85      | 0.61 | 0.85  | 3          | 0.33 | 0.85  | 0.61 | 0.85  |  |
|                      | 0.999 | 0    | 0.32 | 1.00      | 0.61 | 1.00  | 0          | 0.32 | 1.00  | 0.61 | 1.00  |  |
| Biv. Hawkes-POT (M3) | 0.95  | 19   | 0.20 | 0.22      | 0.20 | 0.23  | 20         | 0.28 | 0.20  | 0.24 | 0.21  |  |
|                      | 0.99  | 3    | 0.33 | 0.85      | 0.61 | 0.85  | 4          | 0.64 | 0.80  | 0.87 | 0.80  |  |
|                      | 0.999 | 0    | 0.32 | 1.00      | 0.61 | 1.00  | 2          | 0.11 | 0.90  | 0.28 | 0.90  |  |

Table: Backtesting accuracy test results for the GARCH and Hawkes-POT models proposed, from January 2, 2012 to December 31, 2013.



# Outline

Literature Review

Methodology Conditional intensity models Conditional mean and volatility models

Generating and evaluating forecasts conditional risk measures

Empirical results Forecasting risk



- The role of implied volatility (IV) for forecasting the risk of extreme events in the form of VaR.
- This paper proposes a number of novel MPP models that include IV (univariate and bivariate)
- The empirical analysis: Major equity market indices and their associated IV indices.
- In-sample results: all of the models generate accurate VaR estimates that adequately pass a range of tests.



- · Forecasting: to 1-day ahead prediction of VaR.
  - GARCH style models that include IV generate inaccurate forecasts of VaR and fail a number of tests relating to the rejection frequency of the VaR predictions.
  - Univariate MPP models provide more accurate forecasts with shortcomings at less extreme levels of significance.
  - The bivariate models that include the extreme IV events produce the most accurate forecasts of VaR across the full range of levels of significance.
- The take-home message: while IV is certainly of benefit for predicting extreme movements in equity returns, the framework within which it is used is important.
- The bivariate MPP model proposed here leads to superior forecasts of extreme risk in a VaR context.



# Bibliography

- S. Aboura and N. Wagner. Extreme asymmetric volatility: Vix and s&p 500. *Working paper*, 06-2014:41, 2014.
- BCBS. Fundamental review of the trading book. *Basel Committee on Banking Supervision*, 2012.
- R. Becker, A. Clements, and A. McClelland. The jump component of s&p 500 volatility and the vix index. *Journal of Banking & Finance*, 33(6):1033–1038, 2009.
- B. J. Blair, S. H. Poon, and S. J. Taylor. Forecasting s&p 100 volatility: the incremental information content of implied volatilities and high-frequency index returns. *Journal* of Econometrics, 105:5–26, 2001.
- S. Hilal, S.-H. Poon, and J. Tawn. Hedging the black swan: Conditional heteroskedasticity and tail dependence in s&p500 and vix. *Journal of Banking & Finance*, 35(9):2374–2387, 2011.
- Y. Peng and W. L. Ng. Analysing financial contagion and asymmetric market dependence with volatility indices via copulas. *Annals of Finance*, 8(1):49–74, 2012.
- S.-H. Poon and C. W. J. Granger. Forecasting volatility in financial markets: a review Journal of Economic Literature, 41:478–539, 2003.