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Introduction

• Clustering of extreme events

• Reliable risk measures[BCBS, 2012]

Let the tail speak for itself!
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Motivation

• The CBOE Volatility Index® (IV) is a key measure of market expectations of
near-term volatility conveyed by S&P 500 stock index option prices (The VIX).

• Since its introduction in 1993, IV has been considered by many to be the world’s
premier barometer of investor sentiment and market volatility.
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Motivation

• The CBOE Volatility Index® (IV) is a key measure of market expectations of
near-term volatility conveyed by S&P 500 stock index option prices (The VIX).

• Since its introduction in 1993, IV has been considered by many to be the world’s
premier barometer of investor sentiment and market volatility.
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Financial extreme events features

Summary:

• Extremes appear in clusters

• Excess over a high threshold highly correlated

• Inter-exceedance times are correlated

• Relationship between size of the exceedances and last elapsed
inter-exceedance times

• IV indices are negatively correlated with stock market indices
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Contribution

Research Questions :

1. How do extreme shocks in an IV index relate to extreme events in its respective
stock market return?

1. How can the occurrence and intensity of extreme events in IV indices influence
the dynamic behavior on stock market returns and vice versa?
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Contribution

Approach : Utilise IV within intensity based point process models for extreme returns.

• Model 1: IV as an exogenous variable influencing the intensity and the size
distribution of extreme events.

• Model 2. Extreme movements in IV are treated as events themselves, with their
impact on extreme events in equity returns captured through a bivariate Hawkes
model.

• =⇒Forecasting extreme losses within a Value-at-Risk framework.
• The benchmark =⇒IV within the GARCH-EVT framework.

Features
• Temporal clustering of both the occurrence of extremes and the size thereof
• Cross-sectional feedback between individual exceedance intensities and
• Feedback between the magnitude of exceedances and their intensity.

Date Description
• The data consists of daily returns for the S&P 500, Nasdaq, DAX 30, Dow Jones

and Nikkei stock market indices, and their respective IV indices. Aall series
ending December 31, 2013
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Literature Review

IV indices are an important measure of short-term expected risk

• Blair et al. [2001], Poon and Granger [2003] IV as an exogenous variable in
GARCH models =⇒ beneficial in terms of forecasting.

• Becker et al. [2009] IV contain useful information about future jump activity in
returns =⇒reflect extreme movements in prices.

• Hilal et al. [2011] conditional approach for extremal dependence between daily
returns on VIX futures and S&P500=⇒ VIX futures returns are very sensitive to
stock market downside risk.

• Peng and Ng [2012] cross-market dependence of five of the most important
equity markets and their corresponding volatility indices =⇒ existence of an
asymmetric tail dependence.

• Aboura and Wagner [2014] dependence between S&P 500 index returns and
VIX index changes =⇒existence of a contemporaneous volatility-return tail
dependence for (-) extreme events though not for (+) returns.
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Univariate Hawkes-POT model

Basic setting

• Let {(Xt ,Yt)}t≥1 be a vector of r.v that represent the log-returns of a stock
market index and the associated IV index.

• Define a finite subset of observations {(Ti,Wi,Zi)}i≥1, where:

=⇒Ti corresponds to occurrence times
=⇒Wi magnitude of exceedances higher then u > 0 (Wi := XTi −u)
=⇒Zi the covariate obtained from the IV index (Zi := YTi )

• A Marked Point Process (MPP) N (t) := N (0, t] = ∑i≥11{Ti ≤ t, Wi = w} with
past history or natural filtration Ht = {(Ti,Wi,Zi) ∀i : Ti < t}

λ (t,w |Ht) = λg (t |Ht)g(w |Ht , t) , (1)
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Univariate Hawkes-POT model

• The conditional intensity is characterized by the branching structure of a Hawkes
process

λg (t |Ht) = µ +η ∑
i:ti<t

eδwi+ρzi γe−γ(t−ti), (2)

• Motivated by the Pickands–Balkema–de Haan’s theorem, the extreme losses are
assumed to follow a conditional Generalized Pareto Distribution (GPD)

g(w |Ht , t) =

 1
β (w|Ht ,t)

(
1+ξ

w
β (w|Ht ,t)

)−1/ξ−1
, ξ 6= 0

1
β (w|Ht ,t)

exp
(
− w

β (w|Ht ,t)

)
, ξ = 0,

, (3)

where ξ is the shape parameter and β (w |Ht , t) is a scale parameter specified
as a self-exciting function

β (w |Ht , t) = β0 +β1 ∑
i:ti<t

eδwi+ρzi γe−γ(t−ti).
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Bivariate Hawkes-POT model

Basic setting

• Let{(Xt ,Yt)}t≥1 be a vector of r.v that represent the log-returns of a stock market
index and the associated IV index.

• MPP is defined as a vector of point processes N(t) : {N1 (t) ,N2 (t)}
=⇒N1 (t) is defined through the pairs

{(
T 1

i ,Wi
)}

i≥1; the subset of extreme events in

the log-returns of the stock market occurring at time T 1
i over a high threshold u1 > 0,

with Wi := XT 1
i
−u1.

=⇒N2 (t) is defined by the pairs of events
{(

T 2
i ,Zi

)}
i≥1with Zi := YT 2

i
−u2, which

also characterizes the subset of extreme events occurring in IV at time T 2
i over a high

threshold u2 > 0.

• Ht =
{(

T 1
i ,Wi

)
,
(

T 2
j ,Z j

)
∀i, j : T 1

i < t ∧T 2
j < t

}
denotes the combined

history over all times and marks
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Bivariate Hawkes-POT model

• This bivariate MPP includes a bivariate ground process
Ng

k (t) := ∑i≥11
{

T k
i ≤ t

}
with conditional intensity

λ
1
g (t |Ht) = µ1 +η11 ∑

i:t1
i <t

eδwi γ1e−γ1(t−t1
i ) +η12 ∑

i:t2
i <t

eρzi γ2e−γ2(t−t2
i ) (4)

λ
2
g (t |Ht) = µ2 +η21 ∑

i:t1
i <t

eδwi γ1e−γ1(t−t1
i ) +η22 ∑

i:t2
i <t

eρzi γ2e−γ2(t−t2
i )

• Similar to the univariate MPP we also consider a generalized Pareto density for
the stock market returns as in (3), but with conditional scale parameter

β (w |Ht , t) = β0 +β1 ∑
i:t1

i <t

eδwi γ1e−γ1(t−t1
i ) +β12 ∑

i:t2
i <t

eρzi γ2e−γ2(t−t2
i ). (5)



Methodology Conditional mean and volatility models 16 | 33

Conditional mean and volatility models

The conditional mean of the equity market returns is specified as an Auto Regressive
Moving Average (ARMA) process

rt = µ +
m

∑
i=1

airt−i +
n

∑
j=1

b jεt− j + εt . (6)

Where rt denotes the return on a stock market index at time t, µ the mean, ai and b j
describe the autoregressive and moving average coefficients, respectively and εt
denotes the residual term. The residuals are defined by

εt = ηt
√

ht , ηt ∼ iid(0,1), (7)

where ηt is the standardized residual and ht is the conditional variance.
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Conditional mean and volatility models

The GARCH specifications considered for the conditional variances which include IV
as an exogenous variable are

GARCH(1,1) : (8)

ht = ω +αε
2
t−1 +βht−1 + γIVt−1

GJR-GARCH(1,1) : (9)

ht = ω +αε
2
t−1 +δ max(0,−εt−1)

2 +βht−1 + γIVt−1

EGARCH(1,1) : (10)

lnht = ω +αεt−1 +δ (|εt−1|−E |εt−1|)+β lnht−1 + γ ln IVt−1.

These three conditional volatility specifications are estimated under the following two
alternative distributions, namely Student-t and Skew Student-t.
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Conditional risk measures

GARCH-EVT Models

• The corresponding VaR at the α confidence level of the assumed distribution of
the residuals ηt , i.e., VaRα (ηt) : inf{x ∈ R : P(ηt > x)≤ 1−α}

VaRt
α = µt−1 +VaRα (η)σt−1,

where µt−1 = µ +∑
m
i=1 airt−i and σt−1 = ∑

n
j=1 b j

√
ht− j +

√
ht .

Hawkes-POT Models

• A prediction of the VaR in the next instant at the α confidence level is given by

VaRti+1
α = u+

β (w |Ht)

ξ

{(
λg(ti+1 |Ht)

1−α

)ξ

−1

}
.



Empirical results 20 | 33

Outline

Literature Review

Methodology
Conditional intensity models
Conditional mean and volatility models

Generating and evaluating forecasts conditional risk measures

Empirical results
Forecasting risk

Conclusions



Empirical results 21 | 33

Empirical results

Data Model µ η α δ ρ β0 β1 ξ Log. like AIC

S
&

P
50

0
-V

IX

1 0.031 0.386 0.046 27.660 5.351 0.004 0.017 -0.097 446.904 -877.807
(0.005) (0.049) (0.008) (3.408) (2.006) (0.001) (0.002) (0.034)

2 0.033 -0.449 0.054 32.389 0.004 0.019 -0.092 443.718 -873.435
(0.005) (0.050) (0.008) (2.944) (0.001) (0.002) (0.035)

3 0.021 0.794 0.038 0.004 0.030 0.043 410.805 -809.609
(0.004) (0.054) (0.006) (0.001) (0.003) (0.038)

D
A

X
-V

D
A

X

1 0.044 0.259 0.073 43.010 1.655 0.005 0.016 -0.179 333.364 -650.727
(0.005) (0.046) (0.010) (4.257) (1.026) (0.001) (0.003) (0.033)

2 0.044 0.294 0.074 43.319 0.005 0.018 -0.180 332.085 -650.170
(0.005) (0.045) (0.010) (4.076) (0.001) (0.003) (0.034)

3 0.027 0.736 0.050 0.004 0.042 -0.034 292.604 -573.208
(0.005) (0.057) (0.007) (0.001) (0.004) (0.035)

N
ik

ke
i-

V
X

J

1 0.060 0.164 0.066 22.564 2.927 0.005 0.023 -0.101 150.623 -285.246
(0.009) (0.067) (0.012) (5.068) (0.906) (0.001) (0.004) (0.050)

2 0.060 0.207 0.078 31.455 0.004 0.025 -0.029 146.767 -279.534
(0.009) (0.072) (0.016) (4.118) (0.001) (0.004) (0.040)

3 0.034 0.630 0.047 0.004 0.038 0.133 121.026 -230.052
(0.008) (0.093) (0.012) (0.001) (0.007) (0.059)

Table: Estimates of the univariate Hawkes-POT models used for the analysis of the cluster
behavior for extreme events of negative log-returns in stock markets and positive level-changes
in IV indices. Standard errors are in parenthesis. Log.like corresponds to the log-likelihood of the
model. AIC is the Akaike Information Criterion.
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Empirical results

Data Model µ1 η11 η12 α1 δ µ2 η21 η22 α2 ρ β0 β1 β12 ξ log. like AIC

S
&

P
50

0
-V

IX

1 0.034 0.445 0.000 0.054 32.647 0.065 0.025 0.318 0.031 0.001 0.004 0.019 0.001 -0.093 -1461.07 2950.14
(0.005) (0.050) (0.003) (0.008) (2.933) (0.010) (0.017) (0.118) (0.014) (0.002) (0.001) (0.002) (0.001) (0.035)

2 0.034 0.445 0.000 0.054 32.647 0.065 0.025 0.318 0.031 0.004 0.019 -0.093 -1461.07 2946.14
(0.005) (0.050) (0.003) (0.008) (2.933) (0.010) (0.017) (0.118) (0.014) (0.000) (0.002) (0.035)

3 0.020 0.803 0.000 0.035 0.063 0.000 0.378 0.029 0.003 0.023 0.019 0.035 -1491.98 3007.96
(0.004) (0.055) (0.005) (0.006) (0.010) (0.002) (0.099) (0.010) (0.001) (0.005) (0.009) (0.037)

D
A

X
-V

D
A

X

1 0.000 0.180 0.643 0.094 49.785 0.041 0.023 0.577 0.004 0.002 0.006 0.015 0.001 -0.192 -1357.04 2742.08
(0.007) (0.039) (0.070) (0.013) (4.593) (0.010) (0.014) (0.093) (0.001) (0.001) (0.001) (0.002) (0.001) (0.034)

2 0.000 0.180 0.644 0.094 49.785 0.041 0.023 0.577 0.004 0.006 0.015 -0.192 -1357.04 2738.08
(0.007) (0.040) (0.110) (0.013) (4.604) (0.011) (0.015) (0.126) (0.001) (0.001) (0.002) (0.034)

3 0.017 0.699 0.137 0.042 0.051 0.001 0.493 0.039 0.003 0.037 0.017 -0.055 -1476.20 2976.40
(0.007) (0.068) (0.089) (0.009) (0.010) (0.061) (0.116) (0.014) (0.001) (0.005) (0.008) (0.039)

N
ik

ke
i-

V
X

J

1 0.057 0.168 0.068 0.080 33.449 0.066 0.019 0.318 0.066 0.003 0.005 0.023 0.001 -0.033 -1059.58 2147.16
(0.010) (0.079) (0.034) (0.017) (4.860) (0.009) (0.013) (0.096) (0.024) (0.001) (0.001) (0.004) (0.001) (0.040)

2 0.057 0.168 0.068 0.080 33.449 0.066 0.019 0.318 0.066 0.005 0.023 -0.033 -1059.58 2143.16
(0.010) (0.079) (0.034) (0.017) (4.860) (0.009) (0.013) (0.096) (0.024) (0.001) (0.004) (0.040)

3 0.013 0.712 0.135 0.021 0.068 0.000 0.322 0.082 0.003 0.022 0.030 0.113 -1076.99 2177.98
(0.010) (0.097) (0.069) (0.007) (0.008) (0.001) (0.079) (0.019) (0.001) (0.008) (0.008) (0.055)

Table: Estimates of the bivariate Hawkes-POT models used for the analysis of the cluster
behavior for extreme events of negative log-returns in stock markets and positive level-changes
in IV indices, ending in December 31, 2012. Standard errors are in parenthesis.
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VaR in Sample

Univariate Hawkes Model I: λg (t |Ht) = µ +η ∑i:ti<t γe−γ(t−ti)
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VaR in Sample

Univariate Hawkes Model II: λg (t |Ht) = µ +η ∑i:ti<t eδwi γe−γ(t−ti)
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VaR in Sample

Univariate Hawkes Model III: λg (t |Ht) = µ +η ∑i:ti<t eδwi+ρzi γe−γ(t−ti)
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VaR in Sample

Bivariate Hawkes Model I:
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VaR in Sample

Bivariate Hawkes Model II:
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VaR in Sample

Bivariate Hawkes Model III:
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VaR Forecasting

S&P500 -VIX DAX - VDAX
α Exc. LRuc LRind LRcc DQhit Exc. LRuc LRind LRcc DQhit

EGARCH+IV 0.95 10 0.00 0.52 0.00 0.53 25 1.00 0.16 0.36 0.17
0.99 0 0.00 1.00 0.01 1.00 5 1.00 0.75 0.95 0.75
0.999 0 0.32 1.00 0.61 1.00 0 0.32 1.00 0.61 1.00

Hawkes-POT (M1) 0.95 15 0.03 0.34 0.05 0.35 16 0.05 0.30 0.08 0.32
0.99 2 0.12 0.90 0.30 0.90 3 0.33 0.85 0.61 0.85
0.999 0 0.32 1.00 0.61 1.00 0 0.32 1.00 0.61 1.00

Hawkes-POT (M2) 0.95 15 0.03 0.34 0.05 0.35 16 0.05 0.30 0.08 0.32
0.99 2 0.12 0.90 0.30 0.90 3 0.33 0.85 0.61 0.85
0.999 0 0.32 1.00 0.61 1.00 0 0.32 1.00 0.61 1.00

Hawkes-POT (M3) 0.95 15 0.03 0.34 0.05 0.35 13 0.01 0.40 0.02 0.42
0.99 2 0.12 0.90 0.30 0.90 3 0.33 0.85 0.61 0.85
0.999 0 0.32 1.00 0.61 1.00 0 0.32 1.00 0.61 1.00

Biv. Hawkes-POT (M1) 0.95 18 0.13 0.25 0.16 0.26 20 0.28 0.20 0.24 0.21
0.99 1 0.03 0.95 0.09 0.95 3 0.33 0.85 0.61 0.85
0.999 0 0.32 1.00 0.61 1.00 0 0.32 1.00 0.61 1.00

Biv. Hawkes-POT (M2) 0.95 19 0.20 0.22 0.20 0.23 20 0.28 0.20 0.24 0.21
0.99 3 0.33 0.85 0.61 0.85 3 0.33 0.85 0.61 0.85
0.999 0 0.32 1.00 0.61 1.00 0 0.32 1.00 0.61 1.00

Biv. Hawkes-POT (M3) 0.95 19 0.20 0.22 0.20 0.23 20 0.28 0.20 0.24 0.21
0.99 3 0.33 0.85 0.61 0.85 4 0.64 0.80 0.87 0.80
0.999 0 0.32 1.00 0.61 1.00 2 0.11 0.90 0.28 0.90

Table: Backtesting accuracy test results for the GARCH and Hawkes-POT models proposed,
from January 2, 2012 to December 31, 2013.
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Conclusions

• The role of implied volatility (IV) for forecasting the risk of extreme events in the
form of VaR.

• This paper proposes a number of novel MPP models that include IV (univariate
and bivariate)

• The empirical analysis: Major equity market indices and their associated IV
indices.

• In-sample results: all of the models generate accurate VaR estimates that
adequately pass a range of tests.
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Conclusions

• Forecasting: to 1-day ahead prediction of VaR.
• GARCH style models that include IV generate inaccurate forecasts of VaR and fail a

number of tests relating to the rejection frequency of the VaR predictions.
• Univariate MPP models provide more accurate forecasts with shortcomings at less

extreme levels of significance.
• The bivariate models that include the extreme IV events produce the most accurate

forecasts of VaR across the full range of levels of significance.

• The take-home message: while IV is certainly of benefit for predicting extreme
movements in equity returns, the framework within which it is used is important.

• The bivariate MPP model proposed here leads to superior forecasts of extreme
risk in a VaR context.
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