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Abstract

A methodology based on a system of dynamic multiple linear equations is proposed

that incorporates hourly, daily and annual seasonal characteristics to predict hourly

pm2.5 pollution concentrations for 11 meteorological stations in Santiago, Chile. It is

demonstrated that the proposed model has the potential to match or even surpass the

accuracy of competing nonlinear forecasting models in terms of fit and predictive ability.

In addition, the model is successful in predicting various categories of high concentration

events, between 53% to 76% of mid-range, and around 90% of extreme-range events

on average across all stations. This forecasting model is considered a useful tool for

government authorities to anticipate critical episodes of air quality so as to avoid the

detrimental economic and health impacts of extreme pollution levels.
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1 Introduction

In 2014, The Organisation for Economic Co-operation and Development (OECD) ranked

Chile as the country with the highest air pollution among its 36 members. Furthermore, the

capital Santiago, where 41% of the country’s total population resides, is ranked fourth in

terms of cities with the worst air quality on the continent (WHO, 2011). The components

of pollution of most concern is particulate matter with a diameter less than either 10 or in

particular 2.5 µm, pm10 and pm2.5 respectively. In Chile at least 60% of the inhabitants are

exposed to pm2.5 concentrations over the annual US norm of 15 µg/m3(Cifuentes, 2010),

with the World Health Organization (WHO) suggesting an annual limit of 10 µg/m3, since

its effects on health are more severe than those of pm10 (Kelly & Fussell, 2012). In fact

approximately 4,000 premature deaths due to chronic exposure to this component of pollu-

tion have been recorded according to the Chilean Ministry for the Environment, (Ministerio

del Medio Ambiente, MMA), MMA (2011). There are also significant broader economic

consequences of air pollution. In 2013, the World Bank estimated that lost work-related

income due to air pollution was USD 225 billion. In Chile, the net economic benefits of

effectively regulating pm2.5 is estimated to be USD 7.1 billion according to their National

System of Environmental Information (SINIA), SINIA (2010). Studies such as Böhringer &

Jochem (2007) show that incorporating environmental quality into any analysis of economic

and social issues, is key to the sustainable development of nations.

Given the negative impacts of pm2.5, the central aim of this work is to propose a mul-

tiple linear equation model with dynamic coefficients, which can be easily interpreted and

capable of capturing the stylized features of pm2.5. The predictive ability of this approach

is then compared to a number of more complex competing approaches. Predictive models

are important so that government authorities can take efficient action to minimise the eco-

nomic consequences of heightened pollution levels. It is found that the proposed dynamic

multiple equation model provides more accurate forecasts then its more complex nonlinear

competitor. A result in itself that is very encouraging. From a more practical point of view,

the proposed model is only based on linear regression meaning that estimated coefficients

are easily interpretable (an important issue if government agencies are trying to develop a

deeper understanding of the factors driving pollution levels around the city), the model will

reduce the risk of in-sample overfitting, it can be re-estimated in real-time as computational
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cost is extremely low (its main nonlinear competitor often takes over four times longer for

coefficient estimation) and avoids the use of potentially complex or expensive software to

implement.

In Chile, the regulated target level for pm2.5 is 50 µg/m3 over a 24-hour average. Above

this threshold, three categories of critical episodes are defined: Alert (80 – 109 µg/m3), Pre-

emergency (110 – 169 µg/m3) and Emergency (>170 µg/m3). Current forecasting method-

ology for particulate matter in Chile is based on a multiple linear regression model proposed

by Cassmassi (1999). However, its prediction focuses on pm10 and its accuracy in forecasting

extreme pollution levels in Santiago has been questioned (Delgado et al., 2006), recording

for example, a 44% rate of accuracy for alerts1.

Different methodologies have been proposed to predict pm2.5 concentrations in the short

term, with the recent literature employing both linear and nonlinear econometric models.

Linear specifications include Kalman filtering (Sahu & Mardia, 2005; Djalalova et al., 2015),

multiple linear regression models (Chaloulakou et al., 2003; Genc et al., 2010; Vlachogianni

et al., 2011) and autoregressive integrated moving average (ARIMA) models (Jian et al.,

2012). The last two are widely used in forecasting due to their accuracy and ease of

interpretation of their coefficients (Zhou et al., 2014). Nonlinear models include a support

vector machine (Lu & Wang, 2005; Osowski & Garanty, 2007; Weizhen et al., 2014), a hidden

Markov model (Sun et al., 2013) and artificial neural network (ANN) models (McKendry,

2002; Kukkonen et al., 2003; Ordieres et al., 2005; Prakash et al., 2011). ANN have been

found to successfully model time series with complex characteristics in different fields (Hill

et al., 1996; Hamzaçebi et al., 2009; Zhang et al., 2012) generating accurate forecasts over

the long term given their capacity to make forecasts with multiple advanced notice periods

(Tang & Fishwick, 1993).

In the case of Chile, studies focusing on forecasting pm2.5 mainly employ nonlinear mod-

els (Perez & Reyes, 2006; Dı́az-Robles et al., 2008; Perez & Gramsch, 2016). For example,

Perez & Gramsch (2016) use an ANN to forecast critical episodes of pm2.5 during win-

ter night periods using hourly historical pm10 and pm2.5 data, concentrations from nearby

stations and weather variables. They show that the model correctly predicts up to 70%

of critical episodes of pm2.5, which is attributed to the inclusion of a factor of ventilation

1Geophysics Department of the University of Chile (http://www.geofisica.cl/English/pics3/FUM6.htm).
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as a covariate. Dı́az-Robles et al. (2008) consider a hybrid model combining ARIMA and

ANN structures, predicting pm10 for 2006 at the ‘Las Encinas’ station in Temuco, Chile.

Their results show that the hybrid model captures 80% of the pre-emergency episodes at

this location. Finally, Saide et al. (2011) propose a deterministic chemical based forecasting

model for pm2.5 using carbon monoxide CO as a tracer due to its high correlation to predict

critical night episodes. They conclude that the greatest benefit of the model is its ability

to forecast up to 48 hours ahead.

The paper proceeds as follows. In Section 2, the stylized facts of the pm2.5 time series

that motivate the proposed methodology are presented. Section 3 introduces the method-

ology including three specifications of the proposed model along with two competing ap-

proaches: a seasonal ARIMA model with exogenous variables (SARIMAX) and a nonlinear

Artificial Neural Network (ANN) model. Section 4 discusses the estimation and prediction

results. Finally, Section 5 provides concluding comments.

2 Description of the Data

The data used in this study are hourly historical observations of weather and environmental

concentrations for 11 monitoring stations located in Santiago, Chile. The data was collected

from the National Air Quality Information System (SINCA) for the period January 1, 2011

to August 31, 2015.

Figure 1 shows the geographic distribution of the monitoring stations where it is clear

that the stations are not uniformly spaced across the Santiago city. There are stations sepa-

rated by large distances, such as Talagante and Las Condes, where there is likely to be little

relationship between their concentration levels. In contrast, there is likely to be interactions

between the stations in Pudahuel and Cerro Navia, given their proximity. The values in

parentheses report the annual average of pm2.5 concentrations for the 2011 – 2015 period

at each station. An interesting pattern is that stations with high average concentrations

are located in communes with a higher population density and industrialization. A clear

example is the Cerro Navia station, which is surrounded by the greatest population density

of the stations analyzed with a value of 13,361 inhab/km2, where the annual average of

pm2.5 in the period is 29.45 µg/m3, the highest of all the stations studied.
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To gain a deeper understanding of the stylized facts of the pm2.5 concentrations, Figure 2

shows three violin plots characterizing the distribution of pm2.5 at the Pudahuel monitoring

station. According to the National Institute of Statistics (Instituto Nacional de Estadisticas,

INE), this station is located in the commune with the largest geographical area, with a

land surface of 197.4 km2 and 195,653 inhabitants, INE (2007). In addition, it is one of the

country’s most polluted communes in terms of annual average pm2.5 concentration, reaching

34 µg/m3 in 2015.

The upper panel shows the hourly pattern of the time series: the highest hourly aver-

age pm2.5 concentration is between 6:00 A.M. and 10:00 A.M, due to heavy traffic as the

population begins the work day. Later, the greatest dispersion of hourly average pm2.5

concentration corresponds to the time between 6:00 P.M. and 3:00 A.M. as the work day

ends and people return to their homes between 6:00 P.M. and 9:00 P.M., and temperatures

in winter decrease every day between 10:00 P.M. and 4:00 A.M.

The second panel characterizes the daily average pm2.5 concentration according to the

day of the week. While it is difficult to discern with the naked eye, weekend mean concen-

tration levels are slightly lower, with greater dispersion in concentrations observed across

Friday, Saturday and Sunday. This is likely due to the traffic following a stable pattern

during weekdays, while on the weekends, according to the National Commission for the

Environment (Comisión Nacional del Medio Ambiente, CONAMA), much of the transient

population of 1,800,000 people made up of workers and students return to their homes from

Santiago, CONAMA (2005).

Finally, the third panel highlights the annual seasonality in the form of monthly averages

pm2.5 concentrations. Note that this annual pattern is due to there being on average more

pollution in the autumn-winter months, i.e., April to August, than at other times of the year.

Different factors help explain this behavior. For example, the low temperatures registered

in this period mean the demand for heating homes in Santiago increases, normally from the

burning of fossil fuel material and firewood leading to increased pollution levels. Therefore,

the primary source of pm2.5 in Santiago, in terms of annual average, is firewood at 45%,

followed by transport 33%, industry 16%, agriculture 4% and non-firewood heating 2%

(MMA, 2012).

Temperature should play an important role in the prediction of the pm2.5 concentration,
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Las Condes (21.18 µg/m
3
)

Quilicura (25.79 µg/m
3
)

Independencia (25.11 µg/m
3
)

Cerro Navia (29.45 µg/m
3
)

Pudahuel (26.63 µg/m
3
)

Parque O’Higgins (26.20 µg/m
3
)

Cerrillos (27.81 µg/m
3
)

El Bosque (29.44 µg/m
3
)

La Florida (26.54 µg/m
3
)

Puente Alto (28.07 µg/m
3
)

Talagante (20.70 µg/m
3
)

Figure 1: Map of 11 monitoring stations in Santiago, Chile. Values in parentheses indicate
hourly average pm2.5 in the study period (2011 – 2014) for each commune corresponding to
the monitoring station.

given its impact on the atmospheric and ventilation conditions in the Santiago river basin

and its impact on the demand for heating. Different studies also use temperature and rel-

ative humidity as explanatory variables in pm2.5 prediction models (Kurt & Oktay, 2010;

Zhou et al., 2014; Feng et al., 2015; Saide et al., 2016).

In addition to weather variables, it is also possible to relate pm2.5 to environmental con-

centrations. For example, studies such as Shah et al. (2004) and Wang et al. (2010) report

that pollution from cars and burning firewood is associated with the current level of carbon

monoxide (CO) in the atmosphere, which comprises up to 54% of the pm2.5 concentra-

tion. In particular, Saide et al. (2011) reports a high correlation between the levels of

CO concentration and pm2.5 in Santiago, this even being over 0.95 during night periods in

winter.

Figure 3 shows the dynamic behavior of pm2.5 in relation to a set of weather and

environmental covariates for whole sample period (2011 – 2015) at the Pudahuel monitoring

station. Along with the variables themselves, a weekly moving average is shown as a thick

red line. Indeed, a direct relation exists between CO and pm2.5 with a positive correlation of

0.84, similar to what has been observed in the literature (Naeher et al., 2001; Saide et al.,
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Figure 2: From upper to lower panel: violin plot for hourly average pm2.5 concentration
(upper), average for days of the week (middle) and monthly (lower) for the Pudahuel
monitoring station from January 2011 to August 2015.

2011). Temperature (Temp) and wind speed (WS) are noteworthy among the weather

covariates, having a strong relationship with pm2.5 with a negative correlation of -0.41

and -0.38 respectively. On the other hand, the relative humidity (RH) exhibits a positive

correlation with pm2.5 of 0.23, whereas the wind direction (WD) shows a weak negative

correlation of -0.09.

In particular, WS is an important weather variable as wind assists in dispersing pol-

lution particles. Thus, low WS values favor the accumulation of contaminants; however,

if WS is high, greater ventilation is experienced in the region (Saide et al., 2016). This

explains the negative correlation with the pm2.5 concentration. When the WS values are

high, the pollution particles dissipate faster, thereby reducing the pm2.5 concentration; if

this value is low, the ventilation of pm2.5 decreases.

It should be pointed out that this effect across different stations will also depend on

the WD at each particular station. Garreaud & Rutllant (2006) shows that southwesterly

winds lead to the dispersion of pollution and the intake of clean air towards the Santiago

river basin. Thus, an interaction term between wind speed and direction can capture the
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Figure 3: From upper to lower panel: hourly time series of pm2.5 concentration, CO concen-
tration [ppb], temperature [˚C], relative humidity [%], wind direction [˚] and wind speed
[m/s] for Pudahuel monitoring station from January 2011 to August 2015.

natural ventilation conditions of surrounding a station (Horan & Finn, 2008).

The weekly moving averages highlight any annual cycles present and emphasizes the

correlation between the variables. It is clear that CO, WS and Temp share a very similar

annual cycle with pm2.5. While the annual cycle in RH is not as pronounced, RH is

generally higher during the winter months when pm2.5 is higher. In summary, the proposed

model uses the following covariates: carbon monoxide (CO) measured in parts per billion

(ppb), temperature (Temp) measured in degrees Celsius, the percentage of relative humidity

(RH) in the atmosphere and wind speed (WS) in m/s interacting with wind direction (WD)

defined in degrees.
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3 Methodology

A dynamic multiple equation (DME) model is proposed for the purposes of forecasting

pm2.5. The structure is designed to capture the salient features of pm2.5 and contains 24

equations, one for each hourly interval h within a day. Along with the regular patterns, a

range of weather and environmental variables are included following a number earlier stud-

ies (Hien et al., 2002; Saide et al., 2011; Zhou et al., 2014). A similar model was used by

(Clements et al., 2016) for forecasting electricity demand in the Australian National Elec-

tricity Market. Electricity demand exhibits broadly similar diurnal and seasonal patterns

to pm2.5 levels. The importance of the proposed model lies in its ease of interpretation as

it is linear in the parameters.

PMt is used to denote the pm2.5 concentration observed at any each station at hour

h = 1, . . . , 24, where the index t is used to indicate the pooled time of the series, with one

calender year containing 8,760 hourly observations. Based on this time index t, it is easy

to determine the current day, week or month if necessary, and hence the simple notation

is used. The base specification proposed for the DME is given by the following hourly

equation h:

PMt = θ0h + θh(t)PMt−24 + γh(t)PMt−168 + φ1hεt−24 + φ1hεt−168 + εt + δ>Zt−j (1)

As each hour of the day is governed by a separate equation, the intercepts, θ0h, h = 1, . . . , 24

control the diurnal pattern within a calendar day. εt ∼ N(0, σ2h) is the residual term, and

moving averages at one-day εt−24 and seven-days εt−168 are also included to complete the

vector ARMA structure. The weekly cycle is incorporated by allowing the autoregressive

coefficient on one-day lagged pm2.5, PMt−24 to be a function of the day of the week in the

following way:

θh(t) =
7∑

d=1

ηhdWd(t) (2)

where Wp is a dummy variable, taking a value of 1 if the pooled time t corresponds to

the day of the week d and zero in the other case; ηhd corresponds to the coefficients to

be estimated. This structure allows for differences for example, between using Sunday to

forecast Monday and using Tuesday to forecast Wednesday.
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Similar to the inclusion of the weekly pattern through the θh(t) coefficients, the annual

cycle is incorporated through the interactions of the γh(t) coefficients on the one-week lag

PMt−168. This annual cycle is captured through a Fourier polynomial with annual cycles:2

γh(t) = ah0 +
4∑

j=1

[
ahj sin

(
2jπ

(
t

8760

))
+ bhj cos

(
2jπ

(
t

8760

))]
(3)

where ah0, ahj and bhj are the coefficients of the polynomial for h = 1, . . . , 24 and j =

1, . . . , 4.

The proposed model also includes a set of environmental and weather covariates related

to the pm2.5 concentration level with j hours of delay, with three specifications proposed.

The first of these is given by:

δ>Zt−j = δ1hPMt−j + δ2hPMmaxt−j + δ3hCOt−j + δ4hTempt−j

+δ5hRHt−j + δ6h(WDt−j)WSt−j

(4)

The first two covariates correspond to the pm2.5 concentration with a one-hour delay

and the maximum pm2.5 concentration in last the 24 hours (PMmax). The latter, given

that if it reflects an above-standard value, it is likely to be repeated or it will be difficult to

reduce in the following 24 hours, therefore acting as a good predictor of the following day’s

concentration. The third covariate is the hourly environmental concentration of CO, which

is directly related to the pm2.5 concentration, as discussed in the previous section3. The

final covariates are Temp, RH and WS as an interaction term with WD, which is defined

by using a combination of dichotomous variables given by:

δ6h (WDt) = π1hNt + π2hSt + π3hEt + π4hWt (5)

where North (N) is between 45˚and 135 ,̊ South (S) between 225˚and 315 ,̊ East (E)

between 315˚and 45˚and West (W ) between 135˚and 225 .̊ These each take the value

of 1 if the wind is blowing from that specific direction. As discussed in Section 2, WD

is designed to reflect the atmosphere’s ventilation conditions around the meteorological

2A fourth-degree Fourier polynomial is found to be a good compromise between goodness of fit and
simplicity of the model.

3Note that in the main specification in Eq.(1), we have not included the hourly delay, since the autore-
gressive model is defined in daily terms.
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station.

The second specification is designed to capture spatial effects and includes a covariate

PMc, which represents the average pm2.5 concentrations at the neighboring stations:

δ>Zt−j = δ1hPMt−j + δ2hPMmaxt−j + δ3hCOt−j + δ4hTempt−j

+δ5hRHt−j + δ6h(WDt−j)WSt−j + δ7hPMct−j

(6)

where,

PMct =

10∑
m=1

wmPMmt. (7)

The other stations are denoted by m = 1, . . . , 10. wm is a specific weight corresponding to

the Euclidean distance between the station under study and the other stations, standardized

such that their total is one, and PMmt is the level of pm2.5 concentration at the neighboring

stations. Thus, the closer another station is, the greater impact its concentration will likely

have on pm2.5 at the station of interest. The main idea of this specification is to control for

possible spatial correlations among the concentrations at the different monitoring stations.

The third specification also captures the impact of the pm2.5 concentrations at stations

close to the station under study, but dynamically using the wind direction at those stations.

The idea is to determine whether the wind at the stations nearby is moving in the direction

of the station under study, and if so, this station would more likely be an influence, although

this influence would be inversely proportional to the distance between these stations. This

third model is specified as follows:

δ>Zt−j = δ1hPMt−j + δ2hPMmaxt−j + δ3hCOt−j + δ4hTempt−j

+δ5hRHt−j + δ6h(WDt−j)WSt−j + δ7h(WDct−j)PMct−j

(8)

In this case, the spatially weighted concentrations PMct interact with the average direc-

tion of the wind at each of the nearby stations, WDct. To achieve this, the wind direction

WDt from each station m is decomposed into vectors x and y, giving greater weight to

those closest to the station under study. These are determined by:

∂xmt = wm cos

(
π
WDmt

180

)
, ∂ymt = wm sin

(
π
WDmt

180

)
(9)
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Thus, the direction for this control station is obtained:

WDct = cos−1

 ∑10
m=1 ∂xmt√(∑10

m=1 ∂xmt

)2
+
(∑10

m=1 ∂ymt

)2
 (10)

Similar to Eq. (5), dummy variables are used to determine whether the wind direction

at the nearby stations plays an important role in predicting the pm2.5 concentration.

The multiple equation model in all its variants can be estimated equation-by-equation

using the iterative ordinary least squares method proposed by (Spliid, 1983). Each equation

is initially estimated ignoring the moving-average error terms and the regression residuals

stored. The equations are then re-estimated using the regression residuals from the previous

step as observed moving average error terms. This process is then iterated until convergence

which is defined as the difference in parameter values in successive iterations being less than

a user supplied tolerance, in this case the square root of machine precision for floating-point

arithmetic.

3.1 Competing Models

Here, two competitors to the DME are presented, a SARIMAX model and an ANN model.

3.1.1 SARIMAX Model

A multiplicative double seasonal ARIMA model with exogenous variables (SARIMAX) is

proposed (Box et al., 2015) as pm2.5 series exhibits, in addition to hourly patterns, daily

and weekly seasonality. The general structure for the model is as follows:

φp(L)φP1(LS1)φ
P2(LS2)(1− L)d(1− LS1)

D1(1− LS2)
D2PMt

= δh + Θq(L)ΘQ1(LS1)Θ
Q2(LS2)εt

(11)

Where PMt is the pm2.5 concentration in the period t, L is the delay operator, φp

and Θq are standard autoregressive polynomials and moving averages of orders p and q

respectively. Likewise, φP1(LS1) and φP2(LS2) determine the autoregressive polynomials of

the orders P1 and P2, while ΘQ1(LS1) and ΘQ2(LS2) are the moving average polynomials
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PMh−j,d,t−j

PMh,d−1,t−24

PMh,d−7,t−168

PMmaxh−j,d,t−j

COh−j,d,t−j

Temph−j,d,t−j

RHh−j,d,t−j

(WD×WS)h−j,d,t−j

H1

...
H8

PM2.5hdt

Input layer (8) Hidden layer (1) Output layer (1)

Figure 4: Artificial neural network (ANN) with feedforward structure and backpropagation
learning algorithm used in this investigation.

of the orders Q1 and Q2. The order of integration for each component is defined as d, D1

and D2. Note that δh in this model represents the group of exogenous covariates according

to three specifications used in the DME model defined in Eq. (4)–(8). Thus, the previous

model is built for each station in such a way that it is effectively comparable to the proposed

DME model, being expressed as SARIMAX (p,d,q) × (P1,D1,Q1)S1 × (P2,D2,Q2)S2. In

this case, the seasonal cycles S1 and S2 capture the daily and weekly patterns with S1 = 24

and S2 = 168, respectively with D1 = D2 = 0. Overall, the structure similar to the DME

is SARIMAX (1,0,1) × (1,0,1)24 × (1,0,0)168.

3.1.2 Artificial Neural Network Model

Among nonlinear prediction models, artificial neural networks (ANN) are a popular choice

given their flexibility when dealing with seasonal patterns (Franses & Draisma, 1997). The

most frequently used ANN is the feedforward type and the backpropagation learning algo-

rithm, following the works by Feng et al. (2015) and Perez & Gramsch (2016). Figure 4

presents the structure of the ANN used. It consists of 8 unit input layers, using the same

inputs as the exogenous variables used in the proposed DME model. These inputs feed into

a hidden layer of 8 neurons, which are transformed to one output, corresponding to the

pm2.5 concentration over a specified forecast horizon.

The feedforward neural network refers to information only moving forward through the

network in one direction, as represented by the arrows in Figure 4. Parameter estimation
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is based on the backpropagation learning algorithm of (Rumelhart et al., 1986). Backprop-

agation minimizes error between the predicted and target values by propagating the errors

back through the network to the hidden neurons where the weights are adjusted accord-

ing to their previous contributions to the output. Observations over a two year and three

month period prior to forecasting are used as a training set where this algorithm is used to

minimize prediction error in this period before the subsequent forecasting exercise.

3.2 Measures of Fit and Comparing Predictive Ability

The mean absolute error and the root mean square error are used as measures to evaluate

the fit of the forecast for the pm2.5 time series. The simple prediction error is interpreted

as εt = Yt − Ft , where Yt represents the observed values and Ft the predicted values.

Eq. (12) and (13) show the standard mean absolute error (MAE) and root mean square

error (RMSE) measures respectively:

MAE =
1

n

n∑
t=1

|εt| (12)

RMSE =

[
1

n

n∑
t=1

(εt)
2

] 1
2

(13)

In addition to these simple loss measures, two tests of predictive ability are used to

statistically distinguish between the forecast accuracy of the competing models. The first

is the test proposed by Diebold & Mariano (1995), a traditional test of unconditional

predictive ability (DM test) to reveal whether there is a statistically significant difference

between the forecast accuracy of two models and is based on the null hypothesis of no

difference in the squared errors of the alternative models, H0 : E[(ε1t )
2 − (ε2t )

2]. The test

compares the performance of the proposed DME to either the ANN or SARIMAX, with a

rejection of the null hypothesis indicating that the DME provides significantly more accurate

predictions. Similarly, the test of conditional predictive ability proposed by Giacomini &

White (2006), denoted as the GW test, is performed. This test is based on the same null

hypothesis as the DM test, but its evaluation includes the backtesting period (2 years and

3 months) and all the prediction periods which vary according to the re-estimation periods

(1, 3 and 24 hours). The GW test is more powerful than the DM test which only considers
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differences in average forecast performance.

These tests are based on point forecasts, however provide little information about the

precision of the prediction when only a subset of observations are the focus. In contrast,

probabilistic forecasts generated from predictive distributions provide a complete descrip-

tion of the uncertainty surrounding a point prediction. To overcome the shortcomings of

relying on point forecasts, proper scoring rules can be used to compare different specifica-

tions by means of probabilistic forecasts of critical episodes.

The first scoring rule used is the continuous ranked probability score (CRPS) which is

defined as

CRPS (F, y) =

∫ ∞
−∞

(F (z)− 1 {y ≤ z})2 dz,

where F (z) is the predictive CDF, (Winkler et al., 1996). The second scoring rule is the

threshold-weighted continuous ranked probability score (twCRPS)

twCRPS (F, y) =

∫ ∞
−∞

w(z) (F (z)− 1 {y ≤ z})2 dz.

Here w(z) is a nonnegative weight function which emphasizes a specific region of interest,

critical episodes here. Following Amisano & Giacomini (2007) and Gneiting & Ranjan

(2011), a weight function based on the normal distribution Φ
(
z | r, σ2

)
with variance σ2 > 0

is used. Here r denotes a high threshold as the focus here lies in the right tail of the

distribution. In the empirical section three high thresholds defined in terms of quantiles

(0.95, 0.99, 0.999) are used to assess the accuracy of the competing probabilistic forecasts.

Note, that these scoring rules imply more accurate predictions result in lower scores. In

order to implement the scoring rules, the numerical method proposed by Gneiting & Ranjan

(2011) is used.

Under the DME model, the conditional distribution of PMt is given by

PMt | PMt−24, PMt−168,Zt−j

∼ N
(
ωh + θh(t)PMt−24 + γh(t)PMt−168 + δ>Zt−j, σ

2
h

)
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while for the SARIMA model the conditional distribution of PMt is given by

PMt | PMt−1, PMt−24, PMt−168,Zt−j

∼ N
(
ω + αPMt−1 + θ(t)PMt−24 + γ(t)PMt−168 + δ>Zt−j, σ

2
)

Given that no assumption is made with respect to the distribution of errors under the

ANN approach, for the purposes of computing the scoring rules, it is assumed that the

forecast errors are normally distributed with a constant variance.

4 Empirical Results

This section presents the empirical analysis in terms of in-sample fit and predictive power, in

context of both the level of pm2.5 and the occurrence of periods of extreme levels. Here, the

performance of the DME model will be compared to the SARIMAX and ANN approaches.

4.1 Specification of the models

Three different periods are used for estimation and prediction, 2011–2013, 2012–2014 and

2013–2015. Within each, a period of 2 years and 3 months is used for model estimation,

beginning January 1 at 1:00 A.M. and ending March 31 at 6:00 P.M. of the subsequent year.

Then, the quality of the prediction is evaluated for 2013, 2014 and 2015, from March 31 at

7:00 P.M. to August 31 at 6:00 P.M. of each year. This stage is called critical episode man-

agement (GEC, in Spanish) because it is the period where the highest pm2.5 concentration

levels are recorded, (Perez & Gramsch, 2016), and where the government authorities take

mitigation measures through environmental alert, pre-emergency or emergency, according

to the levels defined in Section 1. The data used to forecast the following 24 hours ends at

6:00 P.M. every day. This is because the primary quality regulation of pm2.5 demands that

a critical episode of air pollution be reported between 8:00 P.M. and 9:00 P.M. on the day

prior to its occurrence (MMA, 2011).

The prediction is made by the hour, re-estimating the model every 1 hour, 3 hours and

24 hours. For the 1 hour ahead forecast, the covariates are included a one-hour delay j = 1.

For 3 and 24 hour forecast horizons, the covariates are included with j = 24 hours of delay

to be consistent with the previously explained forecasting structure. This is because using
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Figure 5: From the left panel, heat map plots showing for annual seasonality of pm2.5 series
with 4 Fourier coefficients for the Pudahuel monitoring station in 2013, 2014 and 2015,
respectively. The horizontal axis represents the total hours in a year, and the vertical axis
represents the 24 hours in a day.

the same variable with a one-day delay provides greater explanatory power than including

it at a 3-hour delay given the diurnal pattern discussed in Section 2. When the longer

3- and 24-hour forecasts are generated, 1-hour ahead predictions of pm2.5 are recursively

constructed and used as lagged information in the longer forecasts.

4.2 In-sample fit of the models

The in-sample RMSE and MAE measures of fit were evaluated for each of the three spec-

ifications of the three models, across all 11 stations and time periods. A full set of these

results are available in the online appendix. Overall, at a 1-hour horizon, Specification 2

produces the best in-sample fit in all three periods, on average across the 11 stations, with

the differences falling moving out to the longer forecast horizons. Table 1 presents a sum-

mary of these results based on the best specification for each of the models. The DME offers

superior in-sample fit relative to the SARIMAX and ANN approaches across all periods,

loss functions and forecast horizons. Only in the case of 24-hour forecasts in 2015, do the

DME and ANN models exhibit equal RMSE. The superiority of Specification 2 implies that

the interaction between WS and WD acts effectively as a ventilation factor for each station,

with their influence being important only if accompanied by the pm2.5 concentration of the
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2013 2014 2015
Model 1 hour 24 hours 1 hour 24 hours 1 hour 24 hours

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE
DME 7.88 4.97 8.38 5.28 7.86 5.02 8.37 5.31 8.16 5.20 8.63 5.47
SARIMAX 8.66 5.37 9.07 5.62 8.58 5.36 8.58 5.36 8.79 5.47 9.21 5.71
ANN 7.98 5.04 8.46 5.32 7.96 5.09 8.38 5.34 8.12 5.17 8.57 5.46

Table 1: Average in-sample fit for the 11 stations for the three proposed models. Columns
exhibit the estimates for 1 and 24 hours in the three estimation years.

stations near the one being studied. This result is consistent with earlier studies such as

Perez & Salini (2008), Jollois et al. (2014) and Perez & Gramsch (2016) where geograph-

ical proximity is found to help explain the relationship between concentrations at nearby

stations.

The remaining discussion of in-sample fit is based on Specification 2 of the DME model.

One of the main stylized facts described in Section 2 is the strong seasonal component

present in different forms of persistence (daily, weekly and annually). First, using heat

graphs, Figure 5 presents the results of the estimation of the Fourier series proposed in Eq.

(3) to capture the annual cycle, based on the hourly pm2.5 data at the Pudahuel station

for 2013, 2014 and 2015, respectively. The horizontal axis corresponds to the 8,760 hourly

observations in a year, and the vertical axis represents the 24 equations of the model, one

for each hour of the day. Colors close to the blue end of the spectrum indicate lower

estimates of the γh(t) coefficient implying lower persistence in pm2.5 concentration, whereas

colors closer to red reflect an increase in persistence. Thus, the annual seasonal component

is characterized for each hour of the day. Additionally, in the period between 2000 and

5000 hours, corresponding to the colder months of April to August when GEC is needed,

increases in γh(t) are observed, indicating higher persistence in the pm2.5 concentration.

Another important pattern is the time of day when the greatest persistence of γh(t) is

observed. In this case, the highest values for γh(t) are seen around 9:00 A.M. and 5:00 P.M.

approximately, the peak periods of vehicular traffic in the city.

In relation to the weekly component, Figure 6 shows the coefficients on the dummy

variables according to the day of the week and the multiplicative variable according to the

daily delay PMh,d−1,t. These stay positive for most of the hourly periods, except between

1:00 A.M. and 4:00 A.M., where the influence of the daily delay is lower and even negative

in some cases, a night-time period in which there is no major traffic or movement in the
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Figure 6: Dummy variables coefficients for each day and hour in the DME for the Pudahuel
station in 2013. The horizontal axis represents the evaluated equation (24 equations, one
per hour of the day) and the vertical axis the value of the coefficient. Graph smoothed on
the basis of the average of observed values.

city. A smoothed fit to the coefficients is also shown to highlight the average value of these

coefficients, revealing that the persistence is also a function of the time of the day.

To highlight the role played by the proposed covariates, Figure 7 shows the smoothed

coefficients in graphical form, again using the Pudahuel monitoring station and the year

2013 for illustrative purposes. They show that on average, the coefficients on both the

daily lag of pm2.5 and concentrations at nearby stations, PMc are positive. In addition,

CO positively influences pm2.5 on average, while the coefficients on Temp and RH take

negative values, consistent with the logic discussed in Section 2, cold days imply a greater

use of wood for heating, while a lower percentage of RH means less dispersion of particulate

matter. Figure 8 presents the coefficients of the interaction term of WS×WD, according to

north, south, east and west. The results reflect the average negative coefficients, which may

be associated with the component of wind speed which shown in Section 2 reflects ventilation

conditions. This effect is all the more important if it is moving in a southwesterly direction.

In relation to the overall fit obtained by the DME model, Figure 9 shows the average R2

statistic for the 11 stations. The three colors represent 2013, 2014 and 2015, respectively.

The upper limit of each band represents the 1-hour estimation and the lower limit the 24-
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Figure 9: Average R2 statistic for the 11 stations in 2013, 2014 and 2015 for each equation
(one per hour). The upper limit of each band represents the 1-hour estimation and the
lower limit the 24-hour estimation.

hour estimation. Note that between 5:00 and 10:00 A.M. the explanatory capacity of the

model decreases, which is consistent with the greater dispersion of the series in that period

(see Section 2). The peak in average R2 for the 11 stations is at 5:00 P.M., with the model

explaining up to 90% of the variance of the pm2.5 in individual cases.

4.3 Prediction

In this section, the predictive accuracy of the proposed DME model is compared with its

competitors. In the context of the DME and SARIMAX models, Specification 2 produces

the most accurate forecasts, consistent with the in-sample results reported earlier. However

under the ANN, Specification 1 described in Eq. (4) is preferred, a result at odds with

the in-sample results. This demonstrates a possible problem of overfitting when using the

ANN, an issue widely cited in the literature (Tetko et al., 1995). This occurs when the

supervised training algorithm, backpropagation here, memorizes the training set in such

a way that when there are new observations and hence patterns in the data to which it
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Model
1 hour 3 hours 24 hours

RMSE MAE RMSE MAE RMSE MAE

2013
DME 10.48 7.30 14.36 10.06 19.29 13.89

SARIMAX 10.87 7.58 15.18 10.56 23.33 16.49
ANN 11.64 7.36 16.24 10.08 20.57 13.51

2014
DME 11.04 7.45 15.14 10.45 21.75 15.80

SARIMAX 11.14 7.47 15.56 10.45 24.53 17.24
ANN 11.43 7.23 18.69 10.45 21.30 15.31

2015
DME 11.19 7.63 15.45 10.64 21.95 15.98

SARIMAX 11.28 7.61 15.95 10.77 25.23 18.00
ANN 14.50 7.74 21.17 10.77 23.04 16.27

Table 2: Out-of-sample fit for the three models evaluated (DME, SARIMAX and ANN)
for 1, 3 and 24 hours in three prediction years. Values in bold indicate average for the 11
stations according to the category.

cannot recognize.

Table 2 reports a summary of out-of-sample forecast accuracy in terms of MAE and

RMSE based on averages across the 11 stations. Again, a full set of results based on each

station is available in the online appendix. Overall, irrespective of the model it is clearly

possible to generate more accurate forecasts at the shorter 1-hour horizon, with relatively

little differences between the precision of the forecasts over the 3- and 24-hour horizons.

Even though the models are re-estimated every 3-hours, the covariates are included at a lag

of 24-hours which results in the accuracy of both longer horizon forecasts being similar due

to the diurnal patterns in the data, which is less of an issue for 1-hour forecasts that use

1-hour lags. On average across the 11 stations, at a 1-hour horizon the DME produces the

most accurate forecasts in nearly all combinations of loss function and evaluation periods.

At a 3-hour horizon, the DME models continues to dominate the others in most cases,

somewhat more frequently under the RMSE loss function. Even at the 24-hour horizon,

the DME provides more accurate forecasts in two of the three periods, 2013 and 2015, with

the ANN and DME exhibiting similar performance in 2014.

Although the previous results provide a preliminary view of the relative forecast accu-

racy, they do not reveal whether the performance of the models are significantly different.

Therefore, tests of unconditional and conditional predictability, the DM and GW tests are
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performed, respectively (Diebold & Mariano 1995; Giacomini & White 2006). Table 3 shows

the p-values of the GW test statistic in every period, emphasizing in bold the values that

conclude that the DME approach produces significantly more accurate forecasts than the

alternative model, SARIMAX or ANN. As the GW test offers more power, results based

of the DM test (they reveal the same patterns as the GW test) are reported in the online

appendix to economise on space.

It is clear in Table 3 that the DME produces significantly more accurate forecasts than

the SARIMAX model for most stations and periods, with the superior performance of the

DME more pronounced at the longer 24-hour horizon. At the shorter horizons of 1- and

3-hours, while there are a number of cases where the DME is superior to ANN, in many

cases there are no significant differences in forecast accuracy. Unreported results (when the

direction of the DM and GW tests are reversed to identify if the ANN is significantly more

accurate than the DME) show that there are very few instances where the ANN models

produces significantly more accurate forecasts. Overall, these results indicate that the DME

model produces forecasts that are at least as accurate as the more complex ANN model,

and in many instance are significantly more accurate even if they are produced from a set

of simpler linear regressions.

4.4 Analysis of critical episodes

Given the potential impact of periods of extreme pollution, this section considers how

well the DME predict episodes of alert, pre-emergency and emergency, based again on

Specification 2. Even though extreme levels are observed only on a small number of days,

the practice of analyzing critical episodes while discarding periods of low air pollution levels

appears to be a natural approach. Table 4 shows the success rate, in the form of percentage

of episodes correctly predicted during the GEC periods, along with number of episodes

recorded. The average for the 11 stations (in the final column headed by X̄ EST ) indicates

that the proposed model achieves a 76% success rate in alert episodes and 100% in pre-

emergency and emergency episodes for 2013. The lowest average success rate for the three

critical episodes is observed in 2015, 53% for alert and 91% for emergency episodes, a year

that exhibited the highest average pm2.5 at 46.19, and greatest standard deviation of 29.82.

In terms of analysis by individual stations, Las Condes station has the lowest average
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Models Station
1 hour 3 hours 24 hours

2013 2014 2015 2013 2014 2015 2013 2014 2015

SARIMAX vs. DME

Cerrillos 0.36 1.00 0.93 0.00 0.05 0.46 0.00 0.07 0.06
Independencia 0.00 0.07 0.00 0.03 1.00 0.99 0.00 0.27 0.01
Las Condes 0.00 0.02 0.04 0.00 0.98 0.00 0.00 0.00 0.00
El Bosque 0.00 0.57 0.67 0.00 0.18 0.04 0.00 0.00 0.00
Parque O’Higgins 0.00 0.93 1.00 0.00 0.00 0.23 0.00 0.11 0.06
Talagante 0.32 0.68 1.00 0.00 0.39 0.70 0.00 0.01 0.00
Quilicura 0.06 0.24 0.88 0.05 0.93 0.44 0.00 0.02 0.00
Pudahuel 0.23 0.74 0.05 0.42 0.70 0.00 0.00 0.12 0.00
Cerro Navia 0.21 0.26 0.89 0.04 0.10 0.05 0.00 0.02 0.00
La Florida 0.00 0.00 0.11 0.00 0.14 0.13 0.00 0.00 0.00
Puente Alto 0.00 0.13 0.44 0.00 0.99 0.45 0.00 0.12 0.00

ANN vs. DME

Cerrillos 0.47 0.00 0.00 0.15 0.18 0.28 0.16 0.79 0.00
Independencia 1.00 0.96 1.00 0.17 0.97 0.95 0.11 0.81 0.30
Las Condes 0.21 0.11 0.08 0.28 0.46 0.11 0.11 0.09 0.04
El Bosque 0.01 0.51 0.19 0.65 0.52 0.53 0.45 0.08 0.26
Parque O’Higgins 0.00 1.00 0.11 0.61 1.00 0.28 0.03 0.86 0.83
Talagante 0.88 1.00 0.96 0.24 0.87 1.00 0.00 0.00 0.99
Quilicura 0.13 0.00 0.01 0.80 0.23 0.24 0.03 0.48 0.12
Pudahuel 0.43 0.91 0.37 0.98 0.83 0.08 0.05 0.46 0.07
Cerro Navia 0.94 0.66 0.04 0.90 0.35 0.28 0.13 0.49 0.06
La Florida 0.08 0.99 0.17 0.76 0.26 0.65 0.59 0.00 0.92
Puente Alto 0.29 0.74 0.97 0.81 0.99 0.87 0.57 0.07 0.19

Table 3: p-values for the GW Test at 11 monitoring stations for three forecasting years
(2012, 2013 and 2014) and in three re-estimation periods: prediction every 1 hour, 3 hours
and 24 hours. Values in bold indicate p-values lower than 0.05.
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pm2.5 and the least variability compared to the other stations and is the only station to

have not experienced an alert (or above) episode. This is due to the fact that Las Condes

station is located at a higher altitude than other communes thus having the benefit of better

atmospheric ventilation. In this case, the DME has never predicted a critical episode of

pm2.5 concentration. In contrast, Cerro Navia shows the lowest success rate on average over

the three years, with 44%, 69% and 50% of alerts, pre-emergencies, emergencies, correctly

predicted respectively. This is because this station exhibits the worst contamination rates,

mainly due to the high consumption of firewood in this commune and the high population

density. Moreover, this station exhibits the highest dispersion in terms of the standard

deviation of the pm2.5 concentration (average 53.84 in 2014), which seems to reflect the

large differences between levels of pollution between winter and other seasons of the year.

In fact, in 2014 firewood accounted for 45% of all sources of pollutants, while in the winter

period its contribution increased to 70%.

Table 5 shows the estimates of mean CRPS and twCRPS scoring rules for the three

models during the forecasting period, from April to August, 2015. In other periods the

results were very similar. As expected, all models produce less accurate forecasts according

to both the unrestrictive (CRPS) and restrictive (twCRPS) scoring rules as the forecast

horizon increases. The results in terms of mean CRPS (relating to the full distribution)

across the horizons of 1-, 3- and 24-hours are now compared. Overall, the DME model

exhibits the best predictive performance in the vast majority of cases, as indicated by the

results i the bottom row of Table 5 tht report the number of stations at at which th DME is

the most accurate prediction. In relation to the critical episodes, we restrict our attention to

the twCRPS results. At the 1- and 3-hour horizons, the DME produces the most accurate

forecasts at the three different extreme thresholds, followed by the ANN specification. While

at a 24-hour horizon, the DME is also considered best, although the second best approach

seems to be SARIMAX. Even when focusing on the more extreme critical episodes the

DME remains the most accurate forecast in the majority of cases. Again the DM test is

used to differentiate between the forecasts based on their performance under the probability

scoring rules. A ∗ or † is used in Table 5 to indicate whether the DME is significantly more

accurate than the SARIMAX or ANN models respectively. At the 1- and 3-hour horizons,

the DME approach is a significantly more accurate forecast than the either the SARIMAX
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or ANN in many cases. At the 24-hour horizon, the DME is significantly more accurate

than its competitors under CRPS in most cases. However, at the extreme quantiles the

differences are less pronounced, the DME is statistically superior to the ANN in nearly half

the cases (of equal predictive accuracy in the others) and only superior to the SARIMAX

in a small number of instances.

Overall, the DME model, based on a simple system of linear regressions, is shown to

produce forecasts that are as least as accurate, and in many cases more accurate than a

number of common competitors. Beyond its relative forecast performance, the ease with

which the coefficients can be interpreted is beneficial as the impact of a range of exogenous

covariates can easily be examined.

Acknowledgements

Herrera acknowledges the Chilean CONICYT funding agency for financial support (FONDE-

CYT 1150349) for this project.

5 Conclusions

Air pollution is a major environmental, health and economic issue in many large urban areas

around the world. In Santiago, Chile, this issue is exacerbated by it unique geographical

location in the Central Valley nestled between the Andes to the west and a smaller range

to the east. Given the negative impacts of air pollution, and in particular pm2.5, much

research attention has been paid to developing predictive models.

This paper developed a multiple linear equation model (DME) with dynamic coeffi-

cients for the purposes of forecasting pm2.5 in Santiago. The model is structured with an

linear equation for each hour of the day, with dynamic coefficients using an annual Fourier

component to capture the annual cycle, well as dummy variables to capture the day of the

week effect. The advantages of this approach lie in the model being linear, meaning that

it is less susceptible to overfitting issues associated with nonlinear models such as ANNs,

and the coefficients can easily be interpreted. A forecasting exercise has demonstrated that

the proposed multiple equation approach is a competitive forecasting alternative to the

two alternative models, ANN and SARIMAX, which are often applied in the literature.
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The DME can adequately capture the seasonality in pm2.5, and surpasses the ANN and

SARIMAX competitors in most cases, in terms of both in-sample and out-of-sample per-

formance. Performance relating to both point and distributional predictions were analyzed

across a number of horizons, with day ahead forecasts, and in particular, extreme events of

particular importance. Based on such forecasts, government authorities can take prompt

strategic measures in response to the forecasts of critical pm2.5 episodes to restrict emissions

of this pollutant.

This research can be extended in a number of different directions including more complex

multivariate models to take into account spatial interactions, forecasts of covariates, and

other information such as traffic flows. This methodology could also be applied to air

quality forecasting in other cities and countries where the time series exhibit broadly with

similar characteristics.
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