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1. Introduction

The National Electricity Market (NEM) in Australia, intraded in December 1998,
operates one of the worlds largest interconnected powégragswhich comprises
five regions, namely New South Wales, Victoria, Queens|&uodith Australia and
Tasmania. Wholesale trading in this market is conducted sgoamarket where
supply and demand are instantaneously matched throught@lbenoordinated
dispatch process. Retailers buy electricity from the wéalle grid at a market
price, known as the spot price, and sell electricity to comsis at a heavily regu-
lated price. An important feature both of this particulazagticity market and of
deregulated electricity markets worldwide is the periamticurrence of abnormally
high prices or price spikes in the spot electricity marketr{Bwv, 2002; de Jong and
Huisman, 2003; Escribanet al., 2002; Lucia and Schwartz, 2002; Burgel .,
2003; Bystrom, 2005; Cartea and Figueroa, 2005). Both the afi these irreg-
ular price events and their duration are particularly hairtd electricity retailers
who cannot pass on price risk to customers, Anderson etG6{2 Consequently,
improving the understanding of factors contributing to tleeurrence of extreme
price events is important for risk management in the eneegyos.

Early attempts to deal with price spikes utilised a rangeaditional time series
approaches. Autoregressive time-series models handtessgiirough the use of
thresholds (Misiorek et al. (2006)), Bernoulli and Poisgamp processes (Cre-
spo Cuaresma et al., 2004; Knittel and Roberts, 2005) andetyaf heavy tailed
error processes (Contreras et al., 2003; Bystrém, 2005i&er al., 2005; Swider
and Weber, 2007). Markov-switching models incorporat&espby proposing dif-
ferent regimes, at least one of which is consistent with te sté system stress
in which a spike is more likely to occur (de Jong and Huism&@@32 Huisman
and Mahieu, 2003; Weron et al., 2004; de Jong, 2006; KosattiVosler, 2006;
Bierbrauer et al., 2007; Becker et al., 2007; Higgs and Vigton, 2008). Dif-
fusion models of the spot price introduce spikes throughathdition of a Poisson
jump component with either a constant intensity parameteron et al. (2004) or
a time-varying intensity parameter, Knittel and Rober30&) in which the inten-
sity of the jump process is typically a linear combinatiordeterministic seasonal
and/or diurnal factors.



More recent approaches to modelling electricity priceattepikes as events and
therefore shift the focus away from modelling the entire@rirajectory to con-
sider the forecasting of price spikes only. This approaehwdron the economet-
rics of point processes, which have become popular in thediabeconometrics
literature (see Bauwens and Hautsch (2009) for a relativetgnt survey). An
early adaptation of duration models (Engle and RussellyL8@aling with both
the occurrence of the event and the size of the event (madsk#)e Autoregres-
sive Conditional Hazard (ACH) model developed by Hamiltowl dorda (2002),
who considered predicting changes in the United Statesr&leidmds target rate.
The ACH model was implemented using electricity prices byigtdnsen, Hurn
and Lindsay (2012). Other approaches in this tradition lamed of Eichler et al.
(2013), who employ the dynamic logit framework of Kauppi &ailkkonen (2008)
for forecasting spike events which incorporates the hystdrspike events. Her-
rera and Gonzalez (2014) also use a duration based ACD-®radtsThreshold
approach to model electricity price spikes.

As pointed out by Eichler et al. (2013), an important issuednsider is the mul-
tivariate behaviour of prices across regions. While swigdigch as Higgs (2009),
Worthington et al. (2005) and Ignatieva and Trueck (2014)n&ixe the volatility
of, correlation and dependence between prices acrosmeeditile attention has
been paid to how extreme price spike events propagate aagissis. Therefore,
the focus of this paper shifts to modelling spikes in muitiptgions simultane-
ously. Of interest is how spikes are transmitted acros®nsgiand the importance
of the physical infrastructure connecting the regions. @kisting models of price
spikes, while capable of dealing with the occurrence of theneand the size of
the event simultaneously, suffer from the fundamental flamod being generalis-
able to a multivariate setting and therefore cannot proaitfamework in which to
examine the transmission of spikes across regions.

To solve this problem, this paper treats price spikes as divamihte Hawkes
process. This class of self-exciting point processes hasnbe popular in high
frequency financial applications given its simplicity, flakty, and the ease with
which the parameters can be interpreted in terms of selfeeygs-excitation (clus-
tering). Since the seminal work of Bowsher (2007), muliai Hawkes processes



have been applied to various high-frequency financial problincluding models
of order book dynamics, high-frequency volatility and misds contagion. Build-
ing on earlier work by Herrera and Gonzalez (2014) and Kok (2012), the
model developed in this paper is a multivariate self-emgitnarked point process
(SEMPP) in which both the occurrence of spikes and their isizgjacent inter-
connected regions of the NEM are modelled.

A crucial element of the inter-regional transmission otprspikes is the availabil-
ity of spare capacity on the interconnectors between themsgln the case of the
NEM, the regional markets of NSW and VIC are connected by glsimtercon-
nector, while those of QLD and NSW are linked via two intemoectors. Data on
spare northerly (NSW to QLD, VIC to NSW) and southerly (QLDN8W, NSW
to VIC) interconnector capacity will be used to determinevhghysical infras-
tructure constraints influence the transmission of pridkespbetween the regions.
The maintained hypothesis is that if spare import capasifpot) available, future
spikes should be smaller (larger) in size as generationcagip@om the nearby
region can (cannot) be transmitted to meet the local dem&stimation results
for a number of multivariate models will highlight the naguwf the links between
the regions and the role played by physical transmissiostcaints. The models
will be compared to restricted univariate versions for eaaion. A forecasting
exercise will also highlight the importance of inter-rega links in terms of fore-
casting the probability of spikes. All the analysis indesathat inter-regional links
are important in that price spikes spill over between regjiand the size of these
spillovers are significantly related to interconnectorazty.

2. Institutional Background

The NEM operates as a pooled market in which all availablelyup a region

is aggregated and generators are dispatched so as to s&tisfnd as cost effec-
tively as possible through a centrally-coordinated digpairocess. A summary of
the process for offers of generation, dispatch and caloulaif the spot price is as



followst. Prior to 12:30 pm on the day before production, generatargge offers
of generation capacity to the Australian Energy Market @mer(AEMO). The of-
fers consist of at most ten price-quantity pairs for eacftmalir of the following
day for prices between the market floor price and the markepcae? Genera-
tors are free to change their offered quantities (commongmia as re-bidding) up
to approximately five minutes before dispatch. Upon recgiphe offers from all
generators, the supply curves are aggregated and gesesatodispatched in line
with the offered capacity so that demand is satisfied as &wsipely as possible.
The dispatch price for each five minute interval is the offieceoof the marginal
generator dispatched into production. The spot price fehdwmlf-hour trading
interval is then calculated as the arithmetic mean of thefige«minute interval
dispatch prices observed within the half-hour, and alldeations occurring within
the half-hour are settled at the spot price. If, in any givegion, local demand
exceeds local supply or electricity in a neighbouring rag® sufficiently inex-
pensive to warrant transmission, then electricity is ingeiand exported between
regions subject to the physical constraints of the intemectors. Ability to im-
port or export electricity is sometimes limited by the plogsitransfer capacity of
the interconnector. When the technical limit of an intereator is reached, the
interconnector is said to be constrained.

Irregular price events (or price spikes) occur when the gpice of electricity
exceeds a given price threshold. Whilst the actual threlsleéd is market-specific,
the argument for using a threshold to define extreme evegénisric (Mount et al.,
2006; Kanamura an@hashi, 2007). For the purposes of this paper, the threshold
set at $100 per megawatt hour (MWh) so that a price spike isetbfs? > $100
MWh, whereR, is the spot price for the 30 minute intervalThis threshold value
has been commonly used in the Australian context (Becker, 2087; Christensen
et al., 2009, 2012; Clements et al., 2013) and also used iR¢hasylvania — New
Jersey — Maryland market (Mount et al. (2006). A price of 8@ lies above

1The term bids is often used to denote offers of generatioaaigpfrom generators to the market
operator.

2Currently the market floor price is$1,000 and market cap price is $&B®0 per megawatt hour
(MWh), although for the sample period used in empirical wibid cap price was $1300/MHh.



the 90th percentile in spot price for each half hour of theidagach of the regions
and is also slightly larger than the marginal cost of gabhgr generation capacity
bought online during periods of market stress.

The choice of a fixed threshold, rather than a variable or gewlously determined
one, also needs to be addressed. Extreme price events aruhssively occur
at times of day designated as “peak” load time, so the globéhition of the
threshold is not particularly problematic from the staridpof differential load.
Furthermore, the fact that the model estimated in this pdpals explicitly with
the size (or mark) of the extreme event as part of the modeprocess makes
the choice of threshold value less critical. In applicagiomhere only the event
itself is being modelled, the choice is arguably more imguatit Of course, making
the threshold an endogenously determined parameter ofrttdem is an impor-
tant technical problem. It is doubtful that the likelihoagh€tion is continuous in
the threshold (because a different value of the threshdldmply fundamentally
different point processes on which to estimate the modelitHmre may be other
criteria that would provide a valid target function for artiogsation. This prob-
lem is a serious research question in its own right and bettomdnmediate scope
of this paper.

The standard explanation for the occurrence of abnormeé @vents is a simple
micro-theoretic one. In the simplest possible world, sypn be regarded as
horizontal until generation capacity is reached and themehecomes vertical. If
demand rises to the point of system capacity (due perhapdrenge weather con-
ditions) or if a significant portion of supply suddenly god#ime due to generation

failure then an abnormal price event results. In other wqordse spikes are simply
a manifestation of scarcity and are not necessarily duéegicabehaviour on the
part of market participants. Increased competition intelgty markets, however,

may have had the undesirable side-effect of raising siaé@gareness of both gen-
erators and retailers and consequently changing the naites¢reme price events.
For example, strategic withholding (deliberately takinvgikable capacity offline)

or strategic bidding behaviour by generators aimed at pgspiice up may now

be as important in explaining price spikes as micro-théoetes.



Regions Year 2005 2006 2007 2008 2009 2010 2011 2012 2013
Mean 720.80 522.56 214.80 1107.886 429.96 1178.89 623.044.302 224.68
a Stddev  1637.19 1420.09 818.61 2316.41 1155.36 2123.89 .3%09 307.65 531.61
6’| Min 0.09 0.31 0.07 0.19 0.33 0.15 0.82 0.15 0.03
Max 7767.33 9057.27 8239.16 9820.99 8288.30 9107.97 8943%492.65 6198.63
N° Events 104 141 1553 195 261 56 184 257 747
Mean 694.36  435.09 293.4482 341.73 617.67 924.96 160.68 .53.06 298.39
= Stddev  1644.69 1180.53 1115.14 955.63 1438.29 2126.49 3410.138.14 519.56
% Min 1.18 0.10 0.02 0.14 0.13 0.45 0.05 0.09 0.16
Max 9066.67 9638.95 9836.37 9900.00 9183.95 8245.79 12036.217.97 70.63
N° Events 197 153 1529 150 303 93 201 120 84
Mean 291.24  569.05 163.61 211.01 718.24 1746.56 660.04 0B12.149.36
Std dev 682.49 1412.74 701.69 960.77 2057.76 2946.32 13301276.96 504.91
VIC Min 0.11 0.13 0.03 0.14 0.14 0.11 0.79 0.14 0.04
Max 3759.73 9034.14 9900.00 8666.23 9900.00 9898.59 9396%B74.42 4181.90
N° Events 117 198 1453 233 197 101 55 171 169

Table 1: Descriptive statistics for the electricity priqakes for QLD, NSW and VIC defined as
prices above AUS$100/MWh for the period 2005-2013. The 2648 only considers observations
until 31 July 2013. Both samples are spaced every 30 minefgesenting 48 trading intervals in
each 24-hour period.

This study considers 30 minute observations from the QuaetgQLD), New
South Wales (NSW) and Victorian (VIC) markets representiigrading intervals
in each 24-hour period. Data for the NSW, QLD pair is avadaiobm 1 January
2005 to 31 December 2013, while for the NSW, VIC pair (due t dkailability
of historical interconnector data), 1 July 2008 to 31 Deceni#t®13. Analysis of
a three region model is restricted to the sample periodrsgaon 1 July 2008. For
the subsequent empirical analysis, data to 31 December i20dr2ployed as an
estimation period while 1 January 2013 to 31 July 2013 is fisefbrecast evalu-
ation. Table 1 presents descriptive statistics of the ntagant process obtained
from the spikes for the three markets based on the spike tiefirof R > $100
MWh. To complement Figure 1 we divide the full sample intoecalar years to
highlight the variability in the intensity of the spikes atite size of the marks.
In relation to the spike frequency over time it can be seenhttie@year 2007 was
exceptional with more than 50% of the observed events aoguduring this time
across all three regions. This period coincides with thglitedf extreme drought
conditions in the Australian Eastern states which had agmt impacts on physi-
cal infrastructure. In relation to the size of the marksretie not a large degree of
variation across time. The mean size of the marks is muchkdangn the threshold
selected for both markets, with the standard deviationsgokirge and varying a



great deal over time. With the standard deviation closereettimes the observed
mean over-dispersion is clearly present.

Figure 1 plots the realised spike events for the NSW, VIC ah® @arkets for
the full period 1 January 2005 to 31 December 2013 with a nurobeatterns
emerging. As noted by Christensen et al. (2009), the memomiustering in the
spikes within each of the regions is clearly evident. Whemgaring the regions,
many of the spikes seem to occur at similar times. This mayakentas prima
facie evidence of a degree of association between the dioa central issue of
this paper. While relatively large spikes have continueddeur in VIC and QLD
during the latter part of the sample, spikes in NSW during time have been very
small in comparison.

Spare interconnector capacity will be used to help explaa ttansmission of
price spikes between the regions, defined as import capaaitgtered intercon-
nector flow. Excess capacity from NSW to QLECnsy—qLpt and QLD to NSW,
ECqLp-snswi are computed by comparing capacity and flow on the northerdy a
southerly directions on the interconnector. The same lisgépplied to construct
excess capacity from NSW to VIECnsw—vict and VIC to NSWECy c_nswi-
Figure 2 shows the excess interconnector capacities bettheetwo pairs of re-
gions. The top two panels shd#Cq p,nswt (top panel) andECnsy—oLpt (Sec-
ond panel) and reveal that excess capacity is often low ar, zeore so in the
southerly direction into NSW. The last two panels sH&W c_.nsw; (third panel)
andECnsw-vict (bottom panel) reveal that capacity is lower in the northelit
rection into NSW, and is often constrained. The ploEGsy-;vict in the bottom
panel show that flow in the southerly direction is not freglyeconstrained. The
greater the excess capacity, a priori the greater the anebpotver that can be im-
ported to combat price spikes due to stresses in a regionn\Wikexcess capacity
reaches zero, there is no opportunity to import power anéteeconnector is said
to be constrained and essentially the region is decoupted tihhe neighbouring re-
gion. VariablesECq p_,navt andECnsy—qLpt (EGyic—nswt andECnsw—vict)
will be used to explain the size of spikes in QLD and NSW (VIQ &SW) as
imported power into a region can be used to offset the imphtdators such as
loss in generation capacity and mitigate the size of spikes.
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Figure 1: Realised spike event,> $100/MWh for the NSW (top panel) and VIC (middle panel)
and QLD (lower panel) markets.

3. Methodology

In this section we introduce a multivariate self-excitingred point process (SEMPP)
in order to characterise the electricity price spikes frow point of view of their
frequency, impact and size. In particular, we concentrata élawkes point pro-
cess (Hawkes, 1971; Embrechts, Liniger and Lin, 2011), wisi@ special class of
SEMPP that can be used to build probabilistic models to caphe instantaneous
behaviour of random events based on the history of the psdogsneans of its
conditional intensity.

Let N (t) be ad—variate marked point procedé= {Ng,...,Ng} enumerating the
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Figure 2: Plots of excess interconnector capacity from QaINEW ECq p_nswt (top panel),
NSW to QLD ECnsv—qLpt (Second panel), VIC to NSWEGyc_.nsw;t (third panel) and NSW to
VIC ECnsw-svict (bottom panel.)

occurrence of all the eventt;,Y;)} of a stochastic process up to timewhere
ti € R andY; are marks with probability density functioh In this paper,N(t)
is either a two-dimensional object comprising price spikeQLD and NSW, or
NSW and VIC in two bivariate models, or a three-dimensioraéct representing
spikes in QLD, NSW and VIC. In all cases, each event has arciaéed mark
capturing the size of the spike.

The defining characteristic of the procds§) is the intensity with which events

10



(price spikes) occur. The intensity is given by
ALy [ &) = Ag(t| ) F(y[t, 7%)

in which 4 may be interpreted as the available information set up tanbttn-
cluding timet. The first term on the right hand side is the ground conditioma
tensity process)q(t | /%), which describes the intensity with which events (price
spikes) occur. The second term on the right hand side is tigapility density
function of the marksY (size of the price spike). The appearance of this term
captures the idea that the ground conditional intensithefioint process depends
on the size of the mark, because the size of the price spikeomamdicative of the
degree of stress in the market.

The ground conditional intensity is assumed to take theatig form

_ d
Aty | ) = <Nj +kz mk/ @ (y) hj (t —s) Nic (ds x dy)) @
=1

in which the following assumptions, which ensure the exrisgeand uniqueness of
a multivariate stationary Hawkes process (Embrechts ,€2@l1), are satisfied

(—oo,t) xR

/whj(t)dt:l, /°°th,.<t)dt<m, /w@<y>fk<y|t,%>dy=1 @)
0 0 —o0

forall j,ke {1,...,d}. Acommon specification fdn; is a kernel exhibiting expo-
nential decay which implies a Markov property for the model

hj(t—s)=aje @9 s<t witha;>0forje{1,...,d}.

In practical applications, the integral in (1) with resptcthe counting proceds
can replaced by its discrete version, thus allowing the mglazonditional intensity
function to take the simple form

. d .
/\é(t,y|%€):ui+k;njk.z m((y)aje*aj(tfti)' 3)

itk<t

This parameterisation of the ground conditional intensitgquation (3) allows for
two important channels of influence on the intensity. The#pation adopted for
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the form of the kernel functioh;, means that a new event causes the conditional
intensity to jump up, and then decay back at spegtbwards the baseline intensity
Hj. This parameterisation clearly captures the stylised tfaatt price spikes tend

to cluster or self-excite. The first summation in the secamthtof (3) is over the
regionsk = {1,---,d}. This means that events in other regions affect the intensit
in the current regionj, and cross-excitation is therefore allowed. This featudre o
the model is a significant departure from the existing liien@ on spot electricity
markets.

Another important channel of influence on the intensity esns the link between
the marks,Y, and the intensity of the point process. This effect is aagutiby
means of the impact functiogy, which takes the following normalised polynomial
form

aly) = a+ by + oy

ax+bE Y]+ cE[Y?]
with ay, by, ¢k unrestricted for eithek € {1,2} or k € {1,2,3}. This form ensures
that the third condition in (2) is satisfied. In order to spethis polynomial func-
tion fully in terms of the moments of, the probably distribution for the marks
of the point process must be specified. Since price spikeggebigition, are ex-
treme events that occur in a very small fraction of the futhpte, the generalised
Pareto distribution (GPD) is a natural candidate to deedtileir distribution. The
asymptotic tail distribution results given by the Pickafidkema-deHaan theo-
ren?, suggest that the GPD function is the best choice of limifunaction for
modelling extremely large price movements. The probagbdinsity function of
the GPD is defined by

—1-1/4.
fk(y|t,jﬁ) _ (1/0k(t)) (1+ Eky/ak(t)) :y>0, &#0 @
(1/0k(t) e Y/ £ =0,

where gi(t) > 0 andéy are scale and shape parameters respectively. Note that
0<y<owif §>0,and K<y < —o(t)x/é if &k <O0forke {1,2} orke {1,2,3}.
Then—central moments for the GPD exist§f < 1/n, and are given b [Y"] =

3See Theorem 3.4.13 property (b) in Embrechts et al. (1997).

12



(nto(t)R) /Mty (1—i&k). This now allows the impact function to be specified in
terms of the scale parameter of the GPD

(1+ by +cy?) (1—2&) (1— &)
(1—&k+bko(t)k) (1—2&) + cho(t)ﬁ

w(y) = (5)

with by, cx unrestricted for eithek € {1,2} ork € {1,2,3}.

The shape parameteé, are simply estimated as constant parameters of the prob-
lem. However, the scale parametergt) are modelled in such a way as to be
dependent on conditions prevalent in regiat the time of the price spike. A sim-
ple linear functional form will be adopted in which scale graeters in the GPD
distribution for the marks for each region are determined by

log ok(t) = BeXk.t (6)

wheref is a vector of coefficients an¥y ; is a vector of covariates observed at
timet, ke {1,...,d}. This linear specification is fairly flexible. In particuldre-
yond unexpected load (to be discussed in detail below) ainalithe state of the
available interconnector capacity between regions atithe of the price spike to
enter as explanatory variables in determinmgt). This is an additional mech-
anism by which inter-regional influences are enabled withi structure of the
model. As suchXy; is specified agECy;ULk;]" whereULy; is the unexpected
load for regionk.

Given the definitions of the ground intensity proce’{ﬁt,y| R) in equation (1)
and the density for the mark$(y | t, /%) in equation (4), the log-likelihood func-
tion is

d .
logL = Z/ logAJ (s| ) Nj (dsx dI)
=14 T xR
d
+ log fj(I | s,72)N;j (ds x dy) Aj( 7
z/m gf(l | y)- z @)

whereA (T) = fOT )\3 (s| ##) dsdefines the compensator for @lE {1,...,d}.

13



4. Modelling Load

In order to obtain a series for unexpected load it is necgssdsuild a model for
forecasting load. Building a complete forecasting modelldad is well beyond
the scope of this paper and is indeed a major undertaking owit right. What is
required here is a simple benchmark model that does an attepob of capturing
the major features of the load profile and is easy to forecastce load exhibits
strong seasonal and diurnal patterns a simple forecastoughthat takes account
of these features is sufficient for the purposes of the cusimy. Despite the
simplicity of the model it has been shown to produce very eateuoad forecasts,
at least for the Queensland region of the NEM. The model iy ®rkplained in
Clements, Hurn and Li, (2015).

A model structure that captures half-hourly variabilitydad while respecting the
well-known features of the load profile is one in which eachi haur is modelled
separately. Let the logarithm of the load at half hbwnd dayd be given byl g,
then, the ARMA structure of the prototype model for a givetf haur period is

Lhd =6ho+ Ghilnd—1+ 6holhd—7 + ¢h1&nd—1+ GhoEhd—7 + End s

in whichh=1--.-,48 andgyq is the disturbance term. So for each half-hdur,
the parameters are estimated based on a subset of the dataomhyji contains the
observations at that interval. In this way, the partial elation between load and
lagged load is allowed to differ in a daily pattern by the &liint parameter values
across equations. A minimal lag structure requltggto be explained by load in
the same half hour on the previous dayy_; and the load in the same half hour of
the same day in the previous weéky_7. For the same reasoning, the unexpected
changes in load in the same half hour on the previous &gy, and the previous
week, &ng_7, are included.

There are three important improvements that can be madéestprtitotype model.

() In order to allow for the coefficients on one-day laggedddo differentiate
between days, the one-day lagged Idag, 1, is interacted with day-of-the-
week dummy variablesiVq,, p=1,---,7. Attempts to reduce the number
of dummy variables in the specification, for example by using for week-
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days and one for weekends, or defining the dummy variablesrinst of
whether the day before and after is a weekday or in weekenduped in-
ferior results.

(i) Itis reasonable to posit that the load in consecutivié inaurs will be corre-
lated so that in addition to observed load in last half-hcenigal of the day
prior to the making a forecasl,sgq_1, €ach equation should also contain
the lagged load from the immediately preceding half hayr,14. Addi-
tional lags of consecutive half-hour periods were triedtbatimprovement
in forecast performance was minimal.

(i) An annual pattern in the load in all the regions of the M allowed for by
specifying Fourier polynomials with annual cycles intéeglcwith the one-
week lagged load,hq—7. The degree of the Fourier polynomials in the series
expansion is four. While this choice is not tested formadkperimentation
showed that little is to be gained by increasing the degréeegbolynomials.

Consequently, the preferred multiple equation time seriedel used for forecast-
ing load is

Lhd =6ho+ 6Ghd1lnd—1+ Ghd2lhd—7 + Ghalagd—1+ Ghslhs1Lh-1d
+ h1&nd—1+ th28nd—7 + End; (8)

in which

7
bha1 =) MhpWap,
p=1

bz =t 3 s (1)) - e an{ )

andlp-1 denotes an indicator function which is equal to 1 whern 1 and 0 oth-
erwise. This modification turns the 48 equations for the halirs of a day into
a recursive system. Once again, repeated application afisoydleast squares
can be used to estimate the system, it provides a parsinomiay of capturing
the intra-day load correlation without increasing compatel complexity signif-
icantly. Experimentation indicates that the more efficestimation method with
taking into account of intra-day error correlation doesgenerally improve fore-

15



cast accuracy.

There is some evidence in the literature to suggest thaegponse of load to tem-
perature is nonlinear in nature and the challenge is to ntbehonlinear response
but at the same time maintain a model specification that ealinn parameters.
Clements et al. (2015) use a flexible spline method to prosigeecewise linear
specification in temperature. The advantages of includiagegmperature variables
are marginal even when actual rather than forecast temyperedlues are used, at
least for the Queensland region. The reason for this is ttatbload varies quite
widely for any given temperature due mainly to the fact thattemperature record
is a non-representative one because it is taken at a specifittdn and then used as
a proxy for the temperature in the entire region. This is astjoeable assumption
given the size of the regions of the NEM.

In this section, the forecast performance of the preferredehin (8) is compared
against the industry standard reported by the market apefdEMO. AEMO as
the operator of the NEM, provides short-term load forecastpre-dispatch IS
reports for the next trading ddy.Among the horizons of the load forecast, 12-
hour ahead forecasts provide important information fopalish planning for the
next day. To monitor 12-hour ahead load forecast accurbeynonthly averaged
MAPE of the 12-hour ahead forecasts is reported by AEMO ashahyeark for
assessing forecast performaficélthough the details of the specification of the
AEMO forecasting procedure are not available, it is the niamecasting model
chosen by the market operator and may therefore be takenrepbesentative of
the state of art in terms of load forecasting models. Givenlithited historical
data publicly available from AEMO with respect to their pshked load forecasts,
the period from July 2012 to November 2013 is used for submssgeomparison.
A comparison of the performance of the preferred multipleagign model (with
and without temperature variables) shown in Table 2

4Seehttp://www.nemweb.com.au/REPORTS/CURRENT/PreDispatchIS_Reports/.
5Seehttp://www.aemo.com.au/Electricity/Data/PreDispatch-Demand- Forecasting-Performance
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Table 2: Summary comparison of 12-hour ahead forecast batiequ(8) and the AEMO forecasts

for the period from July 2012 to November 2013. The T symbdldates that the forecast was
generated using actual temperature data and the flexibfeegplocedure described in Clements et
al. (2015).

Eqg. (8)t Eg.(8) AEMO

Overall MAPE 1.21% 1.37% 1.88%
Max. APE 20.21% 20.26% -
No. APE> 5% 384 585 -
No. APE> 10% 38 44 -
No. APE> 15% 7 7 -
No. APE> 25% 0 0 -
Max. monthly MAPE 1.84% 2.02% 3.2%
Obs. 24864 24864 -

Although this period is only 17 months, the advantage of ttup@sed model is
shown clearly in Table 2, with the monthly MAPEs well belove tAEMO fore-
casts and an improvement of around 0.67% in the overall MARE the AMEO
forecasts. Since AEMO forecasts are based on temperatteeagis instead of
real temperature, the results from the proposed modelrautddy omitting the
variables for current temperature are also reported. Whiee is a fall in ac-
curacy relative to the situation when actual temperatutesésl, this effect is very
small and the model is still more accurate than the AEMO faseander all criteria
(0.51% lower in the overall MAPE).

5. Estimation Results

Table 3 reports the parameter estimates and standard &rdte three models,
namely, the bivariate QLD-NSW model, the bivariate NSW-MUt©del and the
QLD-NSW-VIC model. The interpretation of the parametersh#d models re-
ported in Table 3 is made easier by recognising that the peteamare indexed by
up to three indicesm= 1,2, 3 for three modelsj = 1,2, 3 for the regions QLD,
NSW and VIC, respectively, arldis either a dummy index for the repetition of the
j index or represents the number of explanatory variablegjiatgon. It is useful
to bear in mind the interpretations of the parameters of tbhdeh

() The parametergi,; are the constant terms in the intensity equation (3).
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(i) The parameterg)mjx summarise the self- and cross-excitation properties of
the model in the intensity equation (3). Wheg- k the parameter is a self-
excitation parameter and whgn# k the term captures a cross-excitation
effect.

(i) The parametersyy; are the estimated rates of exponential decay of the in-
tensity equation (3).

(iv) The parameterby,; andcy,; are coefficients of the impact function in equa-
tion (5) which control the shock to intensity conditional thre size of a
spike.

(iv) The parameterén,; are the shape parameters of the of GPD distribution.

(vi) The parametergmjk with k= 0,1,2,3 are parameters relating to the scale
of the GPD function in equation (6). The parametBgro are the constant
terms. Ifk > 0 andj = k then By« are the coefficients on unexpected load.
If k>0 andj # k then3jk are on excess capacity.

As a further aid to the interpretation of the results in Tahl¢éhe coefficients gov-
erning the self-excitation of the intensity of the SEMPP eotured grey, as are
the coefficients governing the effect of unexpected loadhenstale of the GPD
distribution.

In all regions and for all models, the coefficiemtgjx with j =k (coloured grey)

relating to the self-excitation of the SEMPP are statifliticgignificant. This result

confirms that there is clustering in the occurrence of exérenice events in all re-
gions of the NEM. Furthermore, in all but one cageyf in the QLD-NSW model)

the coefficient estimates on the cross excitation terms @siiye and significant.

This indicates that the occurrence of a spike in one regidinngrease the chance
of a spike in the neighbouring regions. While the resultsravereported here,
restricted models with no cross excitation are also eséichator all three models,
the value of the log-likelihood function is significantlyceced®

6The restricted and unrestricted values of the log-likeithofunctions, respectively, are
—1783118 to —1792750 for QLD-NSW, 511616 to —513515 for NSW-VIC and—8460076
to —856890 for the three region model.

18



6T

Unrestricted Hawkes QLD-NSW

Unrestricted Hawkes VIC-NSW

nréstricted Hawkes QLD-NSW-VIC

QLD NSW VIC NSW QLD NSW VIC

j m=1,j=1 m=1, j=2 m=2,j=1 m=2,j=2 m=3,j=1 m=3,j=2 m=3,j=3

Hmi 0.0031 (0.0002) 0.0030 (0.0002) 0.0016 (0.0001) 0.0017 00(2) pm; 0.0024 (0.0002) 0.0017 (0.0001) 0.0016 (0.0001)
. Nmj1 0.6672 (0.0235) 0.0095 (0.0060) 0.6558 (0.0475) 0.0402 (0.0128)7mjz  0.5732 (0.0633) 0.0109 (0.0072)
§ Nmj2 0.1565 (0.0170) 0.8308 (0.0187) 0.0307 (0.0091) 0.7545 (0.0368) nmj> 0.1685 (0.0272) 0.7916 (0.0335) 0.0344 (0.0099)
=  mjs Nmj3 0.0377 (0.0121) 0.6503 (0.0477)
o Omj 0.3758 (0.0145) 0.4049 (0.0129) 0.4402 (0.0310) 0.4897 02@2) amy; 0.4267 (0.0255) 0.4895 (0.0242) 0.4438 (0.0311)

bm; 0.7205 (0.1827) 0.8075 (0.1493) 0.4248 (0.2269) 0.497519@M) by  0.7599  (0.3721) 0.1347 (0.0668) 0.4229 (0.2264)

Cmj -0.1614 (0.0439) -0.1579 (0.0351) -0.0804 (0.0503) -040920.0418) cmj -0.1760 (0.0931) -0.0008 (0.0037) -0.0796 (0.0502)
= &mj 0.2207 (0.0246) 0.0919 (0.0186) 0.3509 (0.0477) 0.1804 04(®) ¢&mj 0.2681 (0.0656) 0.1554 (0.0392) 0.3523 (0.0479)
% Bjo -0.5183 (0.0406) -0.4431 (0.0379) -0.4165 (0.1089) -082980.0908) Bmjo -0.4733 (0.0968) 0.0158 (0.1024) -0.4172  (0.1093)
= Bz 0.8966 (0.1493) -1.9322 (0.1288) 0.4949 (0.1766) -2.1335 (0.1876)Bj1  0.2410 (0.2594) -2.2008 (0.3099)
3_ Bmj2 -1.0020 (0.1260) 1.7309 (0.1199) -2.3420 (0.2683) 1.2445 (0.2363) fmjz -0.2246 (0.3559) 0.8048 (0.2558) -2.3162 (0.2684)
B Brmis Brmis -2.0290 (0.1943) 0.4902 (0.1782)

Table 3: Estimated maximum likelihood parameters for thesimicted Hawkes models in the period 1 January 2005 to 8&mber 2012, for the pair
QLD-NSW and from 1 July 2008 to 31 December 2012 for the paXSW. Figures in parentheses are standard errors. Thfictets governing
the self-excitation of the intensity of the SEMPP are cobolugrey, as are the coefficients governing the effect of usep load on the scale of the
GPD distribution. The log-likelihood value for the QLD-NSWbdel is -17831.18 and for the VIC-NSW model is -5116.16 himthree region model,
the sample is from 1 July 2008 to 31 December 2012 and thelketiHood value is -8460.076. The estimation was conduotetbg-prices which
simplifies the estimation process.



The results in Table 3 indicate that the size of the spikesigréficantly related to
both excess capacity and unexpected load. The positiv@ass offimjk, which

are coloured in grey, indicate that the unexpected loadkshbave a significant
positive impact on the size of price spikes, through thdeatfon the scale coef-
ficient in equation (6). The single exception is the estiniateQLD in the three
region model 8311, which is positive but not significant. Significant negatasti-
mates forBmjx when j # k are as expected: the greater the excess capacity on an
interconnector into a region, the smaller the expecteddfitee spike.

The robust conclusion to emerge from Table 3 is that intgiereal influences mat-
ter. Not only is cross-excitation in the intensity impottasut the flow of electricity
across regional boundaries via the interconnectors issedggnificant factor in de-
termining the expected size of price spikes. Itis clearahaultivariate framework
should be preferred to a univariate one when modelling spikelectricity prices.

Figure 3 plots the impact functiongk(y) for the bivariate QLD-NSW model.
These surfaces reveal the impact on intensity of the sizheokvent ¥) and the
observed covariates through the scale parameigt$ in equation (6)given that

a price spike has occurred. It appears that as the scale coefficient increases (due
to either higher unexpected load and/or lower excess dgpdbere is a general
increase in the value of the impact function. The influencéhefsize of a price
spike (marks), on the other hand appears to be quadraticp@ssible explanation
to this nonlinear effect is the phenomenon of rebidding bseblaad generators.
For larger spikes there is a strategic incentive for genesab rebid generation ca-
pacity at the market floor price in order to ensure their bigstspatched (see, for
example, Hurn, Silvennoinen and Terasvirta, 2015). Thisaesapacity can have
a calming impact on the intensity of further spikes beconmesller as the size of
the price spike grows. Results for the impact functionslierkivariate NSW-VIC
model are identical in nature and not reported here.

Figure 4 shows the impact functions from the three-regiomehoInterestingly,
the estimates ofx(y) for QLD and VIC are the same as those obtained from the
bivariate models, but the pattern for NSW is different. Tlifect of the scale
coefficient is slightly negative and very small, a result ethis probably due to
the interaction of two excess capacities from the other wgions. The effect of
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Figure 3: Impact functiorg(y) as a function of both the size of the marysand scale parameter
ok(t) for the bivariate QLD-NSW model. The QLD function is in thé fganel and the NSW function
is in the right panel.

the size of the spike on intensity is monotonically incregsthough the effect is
smaller than in either of the bivariate models.
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Figure 4: Impact functiorg(y) as a function of both the size of the marysand scale parameter
ok(t) for the QLD-NSW-VIC model. The impact functions for QLD, NS&vid VIC are shown in
the left, centre and right panels, respectively.

A common approach to gauge the goodness of fit of a Hawkes nwlgimeans
of the residual analysis proposed by Ogata (1988). The &eeobtain the residual
process of the model through the compensator

. oo thy
T =N (tij>tij+1) :A Ad (s| H5)ds
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for each dimensiorj € {1,...,d}. According to the time change property for a
point process, the residu@rij} should closely resemble a realisation of a unit
rate Poisson process if the model is well defined. If this ertypis satisfied, the
exceedence times of the process will be exponentiallyibiged with unit rate.
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Figure 5: Goodness of fit in-sample: QQ-plots of the resiqguatess for the bivariate QLD-NSW
Hawkes model. Results for QLD in the left panel and NSW in thbktrpanel.
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Figure 6: Goodness of fit in-sample: QQ-plots of the resigumatess for the three region Hawkes
model. Results for QLD in the left panel, NSW in the centregd@md VIC in the right panel.

Figure 5 displays the QQ-plots realisations for the resiguzcess for both regions
in the QLD-NSW bivariate model against an exponential tistron. Clearly the
model captures the clustering in spikes well for both regibacause the residuals
are consistent with the exponential distribution. Thisiles also true for the three-
region model shown in Figure 6 and for the NSW-VIC bivariatedal, which is
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not reported.

6. Forecast Accuracy

The results in Section 5 show that inter-regional linkagesd|to a superior in-
sample fit for the SEMPP model. The task of this section is terdgne whether or
not they lead to superior forecasts. Providing a standandtyeark model against
which to measure performance is not entirely straightfodwaimply because there
is no existing method that deals with both the intensity d@ldize of the spike,
while also being generalisable to many regions. An earlptdi®on of the Au-
toregressive Conditional Hazard (ACH) model developed bynitton and Jorda
(2002) to electricity prices (Christensen et al., 2012)jclvimodels both the oc-
currence of the event and the size of the event (marks), tdegeneralised to
the multivariate setting. The same is true for the duratiaseld ACD-Peaks Over
Threshold approach of Herrera and Gonzalez (2014). Thendigniagit frame-
work used by Eichler et al. (2013) is potentially generdlisao the multivariate
setting, but it cannot deal with marked point processesefGitie lack of a direct
competitor, the importance of the inter-regional links megticting the intensity
of future spikes is assessed by comparing the Hawkes mauné¢teir restricted
counterparts in which all cross-excitation terms are seeto, nmjx = 0 for j # k.
Where appropriate the results will also be related to theperted by Christensen
et al. (2012) and Clements et al. (2013).

Forecasts of the intensity from the restricted and unetstiimodels are based on
the history of spike times, but both use covariates from the half hour forecast
period to determine the expected size of a spike so that meestis taken here
on a forecasting model for the covariates. Forecastingppeadnce is assessed by
using the parameters of the models estimated in-sampleseTéstimates are then
used to provide half-hour ahead forecasts for the perioshdtakst 00:00 to 31 July
23:30 2013. Although new observations are available evalfyhour, the model
is not re-estimated because this proved to be too compuidiijoexpensive. The
forecast analysis is based on the one-step-ahead prapalbiin event occurring
at timet + 1 instead the conditional intensity. This probability candbtained for
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each regionj through the intensity measure as follows:
P{Nj(t+2)—Nj() =1| 74} = 1—exp(=Aj([t;t+1)x (y,%)))
where
tHl oo
Nt xge) = [ [ Aisl] )
t y
defines the intensity measure. Solving this integral we tizat

Aj([LE+1) x (y,00)) = Ad (t+ 1] S Fi(y | t+1,5411),

whereF; is the cumulative distribution function for the GPD definedeiquation
4. Figure 7 displays the probability forecasts for pric&kepifrom the unrestricted
three region Hawkes model and shows, informally, that thdehdoes a good job
of forecasting spikes and adapts relatively well to clsstérspike events.
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Figure 7: Half-hourly step-ahead probability forecastmfrthe unrestricted three region Hawkes
model for the period 1 January 00:00 hrs to 31 July 23:30 hi82(Price spike$} higher than
AUS$ 100/MWh are displayed with a gray vertical bar. The tapgl shows results for QLD, middle
panel NSW and bottom panel VI@., := Aj ([t,t + 1) x (y,»)) defines the intensity measure for the
regionj.

A formal evaluation of forecast accuracy follows the pragedof Christensen et al.
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(2012) and assumes that extreme events are correctly &riéeaspike occurs at
timet+ 1 and the probability of this event is higher than 0.5. On toetm@ary,
a false alarm occurs if an event does not occur at tirrel but the probability
forecast is higher than 0.5. The choice of 0.5 as the prababiltoff is essentially
arbitrary. A lower threshold improves the percentage ofeszirforecasts but also
increases the probability of false alarms.

Table 4 reports the probability forecasts results from hbéhrestricted and unre-
stricted bivariate models for the QLD-NSW model. Price spilas classified as
mild if $100 > R < $300, and severe if $308 B < $12500, where all prices are
per MWh. For both regions, the general unrestricted bitautitawkes model gives
the best forecasting results. In QLD, a large number of mjikes occurred dur-
ing the forecast period. During this time, the unrestriatestiel correctly forecast
60% of overall spikes (66% for mild and 34% of severe spikeith & false de-
tection rate of 32%. In comparison, the restricted modelemtly forecast spikes
at a rate of only 42% with false detection at 57%. Many feweékesp(only much
smaller spikes) occur in NSW during the forecast period. fEstricted model in
fact performs slightly better in this region. Of co-spikegr(ultaneous events in
both regions), the unrestricted model accurately pre@gts of their occurrence
and produces 10% false alarms. Given the threshold of 0%, @®irst spikes in
QLD can be correctly forecast, 13% of first spikes in VIC anty@% in NSW.
This result is consistent in that spikes in NSW are fewer andllgr during the
forecast period and hence are more difficult to predict.

Table 5 reports the equivalent results for the bivariate NA@Wmodel. Results for
NSW from the unrestricted model are virtually identical ho$e from the QLD-
NSW model, with the restricted model being less accuratdis dase. For the
VIC region, the unrestricted model correctly forecasts 45%verall spikes (45%
for mild and only 1 of 13 severe spikes) with a false detectete of only 13%.
Results for the three region model are not included as theeyeay similar to those
from the bivariate models with only slight reductions in@@xcy. This result is of
little surprise given the shorter sample period along witlingrease in the number
of parameters to be estimated increases leading to gresiilgration uncertainty.
Overall is appears that the inclusion of inter-regionakdiges in the model is the
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most important single factor that improves forecast pentoice.

. L Types of Events
Region Model Event ClaSSIflcatlonM”d Severe  All
True N° 594 153 747
Hawkes Correct 394 52 446
QLD False alarms 237
Restricted Hawkes Correct 278 32 310
False alarms 427
True N° 84 0 84
Hawkes Correct 34 0 34
NSW False alarms 39
Restricted Hawkes Correct 14 0 14
False alarms 26
True N° co-spikes 72 0 72
QLD - NSW Hawkes Correct 21
False alarms 7

Table 4: Results of the half-hourly step-ahead probalfiitgcasts for the regions QLD NSW, during
the period 1 January 00:00 hrs to 31 July 23:30 hrs 2013. Tibe ppikes? are classified in mild if
$100> R < $300, and severe if $300 R > $12500 where all prices are per MWh. The estimation
sample is 1 January 2005 to 31 December 2013.

In terms of the accuracy of probability forecasts, the tsfobm the SEMPP mod-
els are superior to those of Christensen et al. (2012, TgbleNbt only is the
percentage of correct forecasts at least as good as the AQidlfwecasts, the
SEMPP model is vastly superior in terms of the predictiorhefsize of the marks.
In fact, the ACH model proved incapable of accurately piglkamy severe events at
all in 3 of the 4 regions of the NEM considered. The semi-pataimapproach of
Clements et al. (2013) provides a solid forecasting perémee for spikes, which
gives superior accuracy (around 70-75%) to the resultsriegpdnere. Note, how-
ever, that these results are not directly comparable tetbbthe SEMPP because
they refer to different sample periods and the semi-pande@bdel is only capa-
ble of predicting the occurrence of an event and not its mark.

A final point about the forecasts concerns the ability of thealel to pick the first
spike in a cluster correctly. The results show that 26% of §ipgkes in QLD can
be correctly forecast, 13% of first spikes in VIC but only 690N8W if a threshold
probability of 0.5 is adopted. NSW is clearly a problem areeehout, as we em-
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Types of Events

Region Model Event ClassmcatlonlvIiIOI severe Al
True N° 155 13 169

Hawkes Correct 75 1 76

vIC False alarms 29
Restricted Hawkes =°"¢¢t 53 1 54

False alarms 46

True N° 84 0 84

Hawkes Correct 35 0 35

NSW False alarms 39
Restricted Hawkes SO 18 0 18

False alarms 38
True N° co-spikes 65 0 65

NSW - VIC Correct 59

Hawkes
False alarms 11

Table 5: Results of the half-hourly step-ahead probabititgcast for the regions VIC and NSW,
during the period 1 January 00:00 hrs to 31 July 23:30 hrs 20h@ price spike$ are classified
in mild if AUS$ 100/MWh< B <AUS$ 300/MWh, and severe if AUS$ 300/MWhR <AUS$
12500/MWh. Model estimation is based on the sample, Julp@820 December 31, 2012.

phasise in the paper, the sample period we deal with showdexgrspikes in NSW
during the forecast period making them particularly diffica model. While these
numbers may appear on the low side, they are actually qusfeectable in terms
of the published literature. Given the asymmetric naturthefloss involved when
failing to predict a spike, Clements et al. (2013) suggestrgle rule for vary-
ing the threshold to obtain better predictions, specificétiey suggest that using a
threshold of 0.1 for predicting the first spike, followed lsing the threshold to
0.75 for subsequent spikes gives the best forecast penfimend he percentage of
first spikes correctly forecast using this rule reported Bntents et al. (2013) are
32.7%, 11.4%, and 20.8% of the first spikes for NSW, QLD and ¥4€pectively.
This avenue of inquiry has not been pursued here.

A different approach to measuring the forecast accuradyeofriodels is by means
of estimating Value at Risk (VaR) for different levels of éidence. In a traditional
finance setting, Value-at-Risk (VaR) represents a dollas lmmount that we are
95% confident will not be exceeded in a particular period (@héor the sake of
transparency, a conventional confidence level is assunfedglated measure of

27



risk is Expected Shortfall (ES) which represents the sizb®eExpected loss given
that the VaR has been exceeded. In the context in which ied imsthis paper, VaR
measures the level of price that we are 95% confident will eaceeded in a par-
ticular period, specifically the next half hour. ES then nueas the expected level
of price in a half hour period in which the VaR level of pricesiaeen exceeded.
These risk estimates allow market participants to gain afergtanding of their

cashflow risks (either costs or revenues) as a result of atallyr high wholesale

prices. Chavez-Demoulin and McGill (2012) shows that fer jtth dimension of

a Hawkes POT model, the conditional VaR for a confidence leviel

i
VaRtj+a1:Uj+UJ(t) 1o -1],
’ g Ag (t] )

while the associated conditional Expected Shortfall (ERgiculated as

e YR i) &,
j.a 1-F :

In order to determine the accuracy of VaR estimates, a rahgitistical tests are
applied. A detailed explanation of each test is outside ¢thpe of this paper, how-
ever, they are common in the literature relating to VaR egiion, and a description
of each of test can be found in Herrera (2013). An importantept used in the
construction of these tests is that ofeeption, which is defined as a price spike
whose value exceeds the estimated VaR,

1 ifR>Varyt?

0 otherwise

|t(a):

Four tests to measure the accuracy of the VaR estimates guleyed. The first
three tests correspond to Likelihood-Ratio (LR) testsodiiced by Christoffersen
(1998). The first is an unconditional coverage téf () to measure whether the
fraction of exceptions obtained for the VaR is indeed itseetpd value. The sec-
ond corresponds to a test of independend® ) to test independence among the
exceptions. The third is the conditional coverage teBL{), which is a combina-
tion of the last two tests to determine independence anéciocoverage. Finally,
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Regions QLD NSW VIC NSW

a 0.995 0.999 0.9995 0.995 0.999 0.9995 0.995 0.999 0.9995950.9.999 0.9995
Hawkes Model
Exc.(%) 0.56 0.18 0.09 0.34 0.05 0.02 0.52 0.10 0.03 0.4 0.16 0.04
LRy 0.33 0.02 0.06 0.02 0.06 0.11 0.712 0.87 0.29 0.14 0.06 0.57
LRing 0.42 0.79 0.89 0.12 0.94 0.98 0.29 0.88 0.97 0.01 0.1 0.96
LR 0.45 0.05 0.17 0.02 0.18 0.28 0.54 0.98 0.57 0.01 0.18 0.85
DQ 0.42 0.79 0.89 0.12 0.94 0.98 0.29 0.88 0.97 0.01 0.1 0.96
Restricted Hawkes Model

Exc.(%) 0.47 0.18 0.09 043 0.21 0.1 0.57 0.08 0.03 0.4 0.1 0.09
LRy 0.75 0.02 0.14 0.30 0.00 0.03 0.30 043 0.29 0.14 0.87 0.14
LRing 0.49 0.79 0.90 0.02 0.76 0.88 0.00 0.91 0.97 0.56 0.88 0.90
LR 0.75 0.06 0.33 0.03 0.01 0.09 0.01 0.72 0.57 0.28 0.98 0.33
DQ 0.49 0.79 0.90 0.02 0.76 0.88 0.00 0.91 0.97 0.56 0.88 0.90

Table 6: Predictive performance for forecasting of the tiate models based on the accuracy of the
VaR estimates. Entries in the rows are the significanceddyelalues) of the respective tests, with

exception of the confidence level for the Vad®)( and the percentage of exceptions (Exc. (%)). For
the pair QLD - NSW we use the long sample, while for the pair VIISW the short sample.

the Dynamic Quantile tesDQ) proposed by Engle and Manganelli (2004) is also
employed. The idea of thBQ test, is to capture the possible dependence among
the exceptions.

The tests are conducted at different confidence levels,thétfowest being 0.995.
This is because the threshold selected to define a spike/NWY, is equivalent
to a quantile of 0.992 for events in NSW, 0.929 in QLD and 0.98¥IC. Re-
sults are shown in terms @i values, only for confidence levels over the higher of
the two levels across the regions, to make the results cabigaover time. Table
6 reports the results of these tests for both the restriateduarestricted bivariate
models for QLD-NSW and NSW-VIC. Overall, across all regicaistests and lev-
els of significancen, the forecasts from the unrestricted models produce $§light
fewer rejections, six against ten from the restricted n@d@élhe extra rejections
are evenly spread across the different tests. For both madelst of the rejections
occur from forecasts in NSW, which is unsurprising givenltek of large spikes
during the forecast period. In terms of QLD forecasts, tlielitle distinguish be-
tween the restricted and unrestricted models. In VIC, thestricted model fails
to adequately forecast the VaR at the lowest level of sigmifiea = 0.995. The
same patterns are evident in the VaR forecasts from the teégéen model. While
there are not great differences here in terms of VaR forexasiracy between the
restricted and unrestricted models, when considering upergority of the unre-
stricted model in terms of forecasting spike probabilit@gerall the importance of
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the unrestricted model and the interregional links is evide

Figure 8: Graphical description of the E& £ 0.995 anda = 0.9995 in the left and right columns)
as a function of the covariates for the regions of QLD (topgheand NSW (bottom panel). Observe
that the Unexpected load has a positive impact, while thee&capacity of other region has a
negative impact in the estimated ES value.

It is also possible to represent graphically the impact ef¢bvariates on ES at
a given confidence level. This occurs through impact of theagates, namely
unexpected load (UC) and excess interconnector capadty, @ the scale pa-
rameteroi(t) in the density for the marks. Figure 8 shows a graphical detsun
of the risk in terms of ES as a function of covariates for thggaes of QLD (top
panel) and NSW (bottom panel) at= 0.995 anda = 0.9995 in the left and right
columns respectively. Consistent with the parameter estisy unexpected load
has a positive impact, while the excess capacity into eagionmehas a negative
impact in the scale specification, and therefore, on the ESabalue. The levels of
ES become larger moving to the higher levels of confidencetsPér NSW-VIC
are identical in nature and are omitted here.
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7. Conclusion

Price spikes in wholesale electricity prices pose a greltta market participants
and accurate forecasting of these events is needed in ordiet the task of manag-
ing price risk. The existing literature has modelled theun@nce of price spikes in
a univariate framework which confines attention to indiébionarket regions. This
paper uses a multivariate point process to model the ocmerand size of extreme
price events and in so doing highlights the effect of physidaastructure on the
transmission of price spikes in interconnected regionefAustralian electric-
ity market. This multivariate approach leads to improvedgample fit, forecasts
and estimates of risk measures such as value-at-risk arettexpshortfall. Al-
though the results generated by the multivariate selftiexgcpoint process model
are promising, a limitation of this study is that there is e competitor against
which to benchmark the results. An important area of futasearch will therefore
be to place these results in a broader context by developimgpeting models that
allow multivariate transmission of price spikes.
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