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Abstract

Abnormally high price spikes in spot electricity markets represent a significant

risk to market participants. As such, a literature has developed that focuses on

forecasting the probability of such spike events, moving beyond simply forecasting

the level of price. Many univariate time series models have been proposed to deal

with spikes within an individual market region. This paper is the first to develop a

multivariate self exciting point process model for dealingwith price spikes across

connected regions in the Australian National Electricity Market. The importance

of the physical infrastructure connecting the regions on the transmission of spikes

is examined. It is found that spikes are transmitted betweenthe regions, and the

size of spikes is influenced by the available transmission capacity. It is also found

improved risk estimates are obtained when inter-regional linkages are taken into

account.
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1. Introduction

The National Electricity Market (NEM) in Australia, introduced in December 1998,

operates one of the worlds largest interconnected power systems which comprises

five regions, namely New South Wales, Victoria, Queensland,South Australia and

Tasmania. Wholesale trading in this market is conducted as aspot market where

supply and demand are instantaneously matched through a centrally-coordinated

dispatch process. Retailers buy electricity from the wholesale grid at a market

price, known as the spot price, and sell electricity to consumers at a heavily regu-

lated price. An important feature both of this particular electricity market and of

deregulated electricity markets worldwide is the periodicoccurrence of abnormally

high prices or price spikes in the spot electricity market (Barlow, 2002; de Jong and

Huisman, 2003; Escribano,et al., 2002; Lucia and Schwartz, 2002; Burgeret al.,

2003; Byström, 2005; Cartea and Figueroa, 2005). Both the size of these irreg-

ular price events and their duration are particularly harmful to electricity retailers

who cannot pass on price risk to customers, Anderson et al. (2006). Consequently,

improving the understanding of factors contributing to theoccurrence of extreme

price events is important for risk management in the energy sector.

Early attempts to deal with price spikes utilised a range of traditional time series

approaches. Autoregressive time-series models handle spikes through the use of

thresholds (Misiorek et al. (2006)), Bernoulli and Poissonjump processes (Cre-

spo Cuaresma et al., 2004; Knittel and Roberts, 2005) and a variety of heavy tailed

error processes (Contreras et al., 2003; Byström, 2005; Garcia et al., 2005; Swider

and Weber, 2007). Markov-switching models incorporate spikes by proposing dif-

ferent regimes, at least one of which is consistent with a state of system stress

in which a spike is more likely to occur (de Jong and Huisman, 2003; Huisman

and Mahieu, 2003; Weron et al., 2004; de Jong, 2006; Kosater and Mosler, 2006;

Bierbrauer et al., 2007; Becker et al., 2007; Higgs and Worthington, 2008). Dif-

fusion models of the spot price introduce spikes through theaddition of a Poisson

jump component with either a constant intensity parameter,Weron et al. (2004) or

a time-varying intensity parameter, Knittel and Roberts (2005) in which the inten-

sity of the jump process is typically a linear combination ofdeterministic seasonal

and/or diurnal factors.
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More recent approaches to modelling electricity prices treat spikes as events and

therefore shift the focus away from modelling the entire price trajectory to con-

sider the forecasting of price spikes only. This approach draws on the economet-

rics of point processes, which have become popular in the financial econometrics

literature (see Bauwens and Hautsch (2009) for a relativelyrecent survey). An

early adaptation of duration models (Engle and Russell, 1997) dealing with both

the occurrence of the event and the size of the event (marks),is the Autoregres-

sive Conditional Hazard (ACH) model developed by Hamilton and Jordà (2002),

who considered predicting changes in the United States Federal funds target rate.

The ACH model was implemented using electricity prices by Christensen, Hurn

and Lindsay (2012). Other approaches in this tradition are those of Eichler et al.

(2013), who employ the dynamic logit framework of Kauppi andSaikkonen (2008)

for forecasting spike events which incorporates the history of spike events. Her-

rera and Gonzalez (2014) also use a duration based ACD-Peaks-Over-Threshold

approach to model electricity price spikes.

As pointed out by Eichler et al. (2013), an important issue toconsider is the mul-

tivariate behaviour of prices across regions. While studies such as Higgs (2009),

Worthington et al. (2005) and Ignatieva and Trueck (2014) examine the volatility

of, correlation and dependence between prices across regions, little attention has

been paid to how extreme price spike events propagate acrossregions. Therefore,

the focus of this paper shifts to modelling spikes in multiple regions simultane-

ously. Of interest is how spikes are transmitted across regions, and the importance

of the physical infrastructure connecting the regions. Theexisting models of price

spikes, while capable of dealing with the occurrence of the event and the size of

the event simultaneously, suffer from the fundamental flaw of not being generalis-

able to a multivariate setting and therefore cannot providea framework in which to

examine the transmission of spikes across regions.

To solve this problem, this paper treats price spikes as a multivariate Hawkes

process. This class of self-exciting point processes has become popular in high

frequency financial applications given its simplicity, flexibility, and the ease with

which the parameters can be interpreted in terms of self- andcross-excitation (clus-

tering). Since the seminal work of Bowsher (2007), multivariate Hawkes processes
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have been applied to various high-frequency financial problems including models

of order book dynamics, high-frequency volatility and models of contagion. Build-

ing on earlier work by Herrera and Gonzalez (2014) and Korniichuk (2012), the

model developed in this paper is a multivariate self-exciting marked point process

(SEMPP) in which both the occurrence of spikes and their sizein adjacent inter-

connected regions of the NEM are modelled.

A crucial element of the inter-regional transmission of price spikes is the availabil-

ity of spare capacity on the interconnectors between the regions. In the case of the

NEM, the regional markets of NSW and VIC are connected by a single intercon-

nector, while those of QLD and NSW are linked via two interconnectors. Data on

spare northerly (NSW to QLD, VIC to NSW) and southerly (QLD toNSW, NSW

to VIC) interconnector capacity will be used to determine how physical infras-

tructure constraints influence the transmission of price spikes between the regions.

The maintained hypothesis is that if spare import capacity is (not) available, future

spikes should be smaller (larger) in size as generation capacity from the nearby

region can (cannot) be transmitted to meet the local demand.Estimation results

for a number of multivariate models will highlight the nature of the links between

the regions and the role played by physical transmission constraints. The models

will be compared to restricted univariate versions for eachregion. A forecasting

exercise will also highlight the importance of inter-regional links in terms of fore-

casting the probability of spikes. All the analysis indicates that inter-regional links

are important in that price spikes spill over between regions and the size of these

spillovers are significantly related to interconnector capacity.

2. Institutional Background

The NEM operates as a pooled market in which all available supply to a region

is aggregated and generators are dispatched so as to satisfydemand as cost effec-

tively as possible through a centrally-coordinated dispatch process. A summary of

the process for offers of generation, dispatch and calculation of the spot price is as
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follows1. Prior to 12:30 pm on the day before production, generators provide offers

of generation capacity to the Australian Energy Market Operator (AEMO). The of-

fers consist of at most ten price-quantity pairs for each half-hour of the following

day for prices between the market floor price and the market cap price.2 Genera-

tors are free to change their offered quantities (commonly known as re-bidding) up

to approximately five minutes before dispatch. Upon receiptof the offers from all

generators, the supply curves are aggregated and generators are dispatched in line

with the offered capacity so that demand is satisfied as inexpensively as possible.

The dispatch price for each five minute interval is the offer price of the marginal

generator dispatched into production. The spot price for each half-hour trading

interval is then calculated as the arithmetic mean of the sixfive-minute interval

dispatch prices observed within the half-hour, and all transactions occurring within

the half-hour are settled at the spot price. If, in any given region, local demand

exceeds local supply or electricity in a neighbouring region is sufficiently inex-

pensive to warrant transmission, then electricity is imported and exported between

regions subject to the physical constraints of the interconnectors. Ability to im-

port or export electricity is sometimes limited by the physical transfer capacity of

the interconnector. When the technical limit of an interconnector is reached, the

interconnector is said to be constrained.

Irregular price events (or price spikes) occur when the spotprice of electricity

exceeds a given price threshold. Whilst the actual threshold used is market-specific,

the argument for using a threshold to define extreme events isgeneric (Mount et al.,

2006; Kanamura and̄Ohashi, 2007). For the purposes of this paper, the thresholdis

set at $100 per megawatt hour (MWh) so that a price spike is defined asPt ≥ $100

MWh, wherePt is the spot price for the 30 minute intervalt. This threshold value

has been commonly used in the Australian context (Becker et al., 2007; Christensen

et al., 2009, 2012; Clements et al., 2013) and also used in thePennsylvania – New

Jersey – Maryland market (Mount et al. (2006). A price of $100/MWh lies above

1The term bids is often used to denote offers of generation capacity from generators to the market
operator.

2Currently the market floor price is−$1,000 and market cap price is $13,500 per megawatt hour
(MWh), although for the sample period used in empirical workthe cap price was $12,500/MHh.
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the 90th percentile in spot price for each half hour of the dayin each of the regions

and is also slightly larger than the marginal cost of gas-turbine generation capacity

bought online during periods of market stress.

The choice of a fixed threshold, rather than a variable or endogenously determined

one, also needs to be addressed. Extreme price events almostexclusively occur

at times of day designated as “peak” load time, so the global definition of the

threshold is not particularly problematic from the standpoint of differential load.

Furthermore, the fact that the model estimated in this paperdeals explicitly with

the size (or mark) of the extreme event as part of the modelling process makes

the choice of threshold value less critical. In applications where only the event

itself is being modelled, the choice is arguably more important. Of course, making

the threshold an endogenously determined parameter of the problem is an impor-

tant technical problem. It is doubtful that the likelihood function is continuous in

the threshold (because a different value of the threshold will imply fundamentally

different point processes on which to estimate the model) but there may be other

criteria that would provide a valid target function for an optimisation. This prob-

lem is a serious research question in its own right and beyondthe immediate scope

of this paper.

The standard explanation for the occurrence of abnormal price events is a simple

micro-theoretic one. In the simplest possible world, supply can be regarded as

horizontal until generation capacity is reached and thereafter becomes vertical. If

demand rises to the point of system capacity (due perhaps to extreme weather con-

ditions) or if a significant portion of supply suddenly goes offline due to generation

failure then an abnormal price event results. In other words, price spikes are simply

a manifestation of scarcity and are not necessarily due strategic behaviour on the

part of market participants. Increased competition in electricity markets, however,

may have had the undesirable side-effect of raising strategic awareness of both gen-

erators and retailers and consequently changing the natureof extreme price events.

For example, strategic withholding (deliberately taking available capacity offline)

or strategic bidding behaviour by generators aimed at pushing price up may now

be as important in explaining price spikes as micro-theoretic ones.

6



Regions Year 2005 2006 2007 2008 2009 2010 2011 2012 2013

Q
L

D

Mean 720.80 522.56 214.80 1107.886 429.96 1178.89 623.04 124.30 224.68
Std dev 1637.19 1420.09 818.61 2316.41 1155.36 2123.89 1609.33 307.65 531.61

Min 0.09 0.31 0.07 0.19 0.33 0.15 0.82 0.15 0.03
Max 7767.33 9057.27 8239.16 9820.99 8288.30 9107.97 8943.67 2792.65 6198.63

N° Events 104 141 1553 195 261 56 184 257 747
N

S
W

Mean 694.36 435.09 293.4482 341.73 617.67 924.96 160.68 106.53 298.39
Std dev 1644.69 1180.53 1115.14 955.63 1438.29 2126.49 410.34 138.14 519.56

Min 1.18 0.10 0.02 0.14 0.13 0.45 0.05 0.09 0.16
Max 9066.67 9638.95 9836.37 9900.00 9183.95 8245.79 12036.17 217.97 70.63

N° Events 197 153 1529 150 303 93 201 120 84

VIC

Mean 291.24 569.05 163.61 211.01 718.24 1746.56 660.04 312.07 149.36
Std dev 682.49 1412.74 701.69 960.77 2057.76 2946.32 1730.33 1276.96 504.91

Min 0.11 0.13 0.03 0.14 0.14 0.11 0.79 0.14 0.04
Max 3759.73 9034.14 9900.00 8666.23 9900.00 9898.59 9496.53 9874.42 4181.90

N° Events 117 198 1453 233 197 101 55 171 169

Table 1: Descriptive statistics for the electricity price spikes for QLD, NSW and VIC defined as
prices above AUS$100/MWh for the period 2005-2013. The year2013 only considers observations
until 31 July 2013. Both samples are spaced every 30 minutes representing 48 trading intervals in
each 24-hour period.

This study considers 30 minute observations from the Queensland (QLD), New

South Wales (NSW) and Victorian (VIC) markets representing48 trading intervals

in each 24-hour period. Data for the NSW, QLD pair is available from 1 January

2005 to 31 December 2013, while for the NSW, VIC pair (due to the availability

of historical interconnector data), 1 July 2008 to 31 December 2013. Analysis of

a three region model is restricted to the sample period starting on 1 July 2008. For

the subsequent empirical analysis, data to 31 December 2012is employed as an

estimation period while 1 January 2013 to 31 July 2013 is usedfor forecast evalu-

ation. Table 1 presents descriptive statistics of the marked point process obtained

from the spikes for the three markets based on the spike definition of Pt ≥ $100

MWh. To complement Figure 1 we divide the full sample into calendar years to

highlight the variability in the intensity of the spikes andthe size of the marks.

In relation to the spike frequency over time it can be seen that the year 2007 was

exceptional with more than 50% of the observed events occurring during this time

across all three regions. This period coincides with the height of extreme drought

conditions in the Australian Eastern states which had significant impacts on physi-

cal infrastructure. In relation to the size of the marks, there is not a large degree of

variation across time. The mean size of the marks is much larger than the threshold

selected for both markets, with the standard deviations being large and varying a
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great deal over time. With the standard deviation close to three times the observed

mean over-dispersion is clearly present.

Figure 1 plots the realised spike events for the NSW, VIC and QLD markets for

the full period 1 January 2005 to 31 December 2013 with a number of patterns

emerging. As noted by Christensen et al. (2009), the memory,or clustering in the

spikes within each of the regions is clearly evident. When comparing the regions,

many of the spikes seem to occur at similar times. This may be taken as prima

facie evidence of a degree of association between the regions, the central issue of

this paper. While relatively large spikes have continued tooccur in VIC and QLD

during the latter part of the sample, spikes in NSW during this time have been very

small in comparison.

Spare interconnector capacity will be used to help explain the transmission of

price spikes between the regions, defined as import capacity- metered intercon-

nector flow. Excess capacity from NSW to QLD,ECNSW→QLD,t and QLD to NSW,

ECQLD→NSW,t are computed by comparing capacity and flow on the northerly and

southerly directions on the interconnector. The same logicis applied to construct

excess capacity from NSW to VIC,ECNSW→V IC,t and VIC to NSW,ECVIC→NSW,t .

Figure 2 shows the excess interconnector capacities between the two pairs of re-

gions. The top two panels showECQLD→NSW,t (top panel) andECNSW→QLD,t (sec-

ond panel) and reveal that excess capacity is often low or zero, more so in the

southerly direction into NSW. The last two panels showECVIC→NSW,t (third panel)

andECNSW→V IC,t (bottom panel) reveal that capacity is lower in the northerly di-

rection into NSW, and is often constrained. The plot ofECNSW→V IC,t in the bottom

panel show that flow in the southerly direction is not frequently constrained. The

greater the excess capacity, a priori the greater the amountof power that can be im-

ported to combat price spikes due to stresses in a region. When the excess capacity

reaches zero, there is no opportunity to import power and theinterconnector is said

to be constrained and essentially the region is decoupled from the neighbouring re-

gion. VariablesECQLD→NSW,t andECNSW→QLD,t (ECVIC→NSW,t andECNSW→V IC,t )

will be used to explain the size of spikes in QLD and NSW (VIC and NSW) as

imported power into a region can be used to offset the impact of factors such as

loss in generation capacity and mitigate the size of spikes.
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Figure 1: Realised spike events,Pt ≥ $100/MW h for the NSW (top panel) and VIC (middle panel)
and QLD (lower panel) markets.

3. Methodology

In this section we introduce a multivariate self-exciting marked point process (SEMPP)

in order to characterise the electricity price spikes from the point of view of their

frequency, impact and size. In particular, we concentrate on a Hawkes point pro-

cess (Hawkes, 1971; Embrechts, Liniger and Lin, 2011), which is a special class of

SEMPP that can be used to build probabilistic models to capture the instantaneous

behaviour of random events based on the history of the process by means of its

conditional intensity.

Let N (t) be ad−variate marked point processN = {N1, . . . ,Nd} enumerating the
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Figure 2: Plots of excess interconnector capacity from QLD to NSW ECQLD→NSW,t (top panel),
NSW to QLDECNSW→QLD,t (second panel), VIC to NSWECV IC→NSW,t (third panel) and NSW to
VIC ECNSW→V IC,t (bottom panel.)

occurrence of all the events{(ti,Yi)} of a stochastic process up to timet, where

ti ∈ R andYi are marks with probability density functionf . In this paper,N(t)

is either a two-dimensional object comprising price spikesin QLD and NSW, or

NSW and VIC in two bivariate models, or a three-dimensional object representing

spikes in QLD, NSW and VIC. In all cases, each event has an associated mark

capturing the size of the spike.

The defining characteristic of the processN(t) is the intensity with which events
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(price spikes) occur. The intensity is given by

λ (t,y | Ht) = λg (t | Ht) f (y | t,Ht)

in which Ht may be interpreted as the available information set up to butnot in-

cluding timet. The first term on the right hand side is the ground conditional in-

tensity process,λg (t | Ht), which describes the intensity with which events (price

spikes) occur. The second term on the right hand side is the probability density

function of the marks,Y (size of the price spike). The appearance of this term

captures the idea that the ground conditional intensity of the point process depends

on the size of the mark, because the size of the price spike maybe indicative of the

degree of stress in the market.

The ground conditional intensity is assumed to take the following form

λ j
g (t,y | Ht) =

(

µ j +
d

∑
k=1

η jk

�

(−∞,t)×R

φk (y)h j (t − s)Nk (ds×dy)

)

(1)

in which the following assumptions, which ensure the existence and uniqueness of

a multivariate stationary Hawkes process (Embrechts et al., 2011), are satisfied
� ∞

0
h j (t)dt = 1,

� ∞

0
th j (t)dt < ∞,

� ∞

−∞
φk (y) fk(y | t,Ht)dy = 1 (2)

for all j,k ∈ {1, . . . ,d}. A common specification forh j is a kernel exhibiting expo-

nential decay which implies a Markov property for the model

h j (t − s) = α je
−α j(t−s), s < t, with α j > 0 for j ∈ {1, . . . ,d} .

In practical applications, the integral in (1) with respectto the counting processN

can replaced by its discrete version, thus allowing the ground conditional intensity

function to take the simple form

λ j
g (t,y | Ht) = µ j +

d

∑
k=1

η jk ∑
i:tk

i <t

φk (y)α je
−α j(t−tk

i ). (3)

This parameterisation of the ground conditional intensityin equation (3) allows for

two important channels of influence on the intensity. The specification adopted for
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the form of the kernel functionh j, means that a new event causes the conditional

intensity to jump up, and then decay back at speedα j towards the baseline intensity

µ j. This parameterisation clearly captures the stylised factthat price spikes tend

to cluster or self-excite. The first summation in the second term of (3) is over the

regions,k = {1, · · · ,d}. This means that events in other regions affect the intensity

in the current region,j, and cross-excitation is therefore allowed. This feature of

the model is a significant departure from the existing literature on spot electricity

markets.

Another important channel of influence on the intensity concerns the link between

the marks,Y , and the intensity of the point process. This effect is captured by

means of the impact function,φk, which takes the following normalised polynomial

form

φk (y) =
ak +bky+ cky2

ak +bkE [Y ]+ ckE [Y 2]

with ak,bk,ck unrestricted for eitherk ∈ {1,2} or k ∈ {1,2,3}. This form ensures

that the third condition in (2) is satisfied. In order to specify this polynomial func-

tion fully in terms of the moments ofY , the probably distribution for the marks

of the point process must be specified. Since price spikes, bydefinition, are ex-

treme events that occur in a very small fraction of the full sample, the generalised

Pareto distribution (GPD) is a natural candidate to describe their distribution. The

asymptotic tail distribution results given by the Pickands-Balkema-deHaan theo-

rem3, suggest that the GPD function is the best choice of limitingfunction for

modelling extremely large price movements. The probability density function of

the GPD is defined by

fk (y | t,Ht) =







(1/σk(t)) (1+ξky/σk(t))
−1−1/ξk ; y > 0, ξk 6= 0

(1/σk(t))e−y/σk(t) ξk = 0,
(4)

whereσk(t) > 0 andξk are scale and shape parameters respectively. Note that

0≤ y < ∞ if ξk ≥ 0, and 0≤ y <−σ(t)k/ξk if ξk < 0 for k ∈ {1,2} or k ∈ {1,2,3}.

Then−central moments for the GPD exist ifξk < 1/n, and are given byE [Y n] =

3See Theorem 3.4.13 property (b) in Embrechts et al. (1997).
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(

n!σ(t)n
k

)

/∏n
i=1(1− iξk). This now allows the impact function to be specified in

terms of the scale parameter of the GPD

φk (y) =

(

1+bky+ cky2
)

(1−2ξk) (1−ξk)

(1−ξk +bkσ(t)k) (1−2ξk)+2ckσ(t)2
k

(5)

with bk,ck unrestricted for eitherk ∈ {1,2} or k ∈ {1,2,3}.

The shape parameters,ξk, are simply estimated as constant parameters of the prob-

lem. However, the scale parametersσk(t) are modelled in such a way as to be

dependent on conditions prevalent in regionk at the time of the price spike. A sim-

ple linear functional form will be adopted in which scale parameters in the GPD

distribution for the marks for each region are determined by

logσk(t) = β ′
kXk,t (6)

whereβk is a vector of coefficients andXk,t is a vector of covariates observed at

time t, k ∈ {1, . . . ,d}. This linear specification is fairly flexible. In particular, be-

yond unexpected load (to be discussed in detail below) it allows the state of the

available interconnector capacity between regions at the time of the price spike to

enter as explanatory variables in determiningσk(t). This is an additional mech-

anism by which inter-regional influences are enabled withinthe structure of the

model. As suchXk,t is specified as[ECk,t ;ULk,t ]
′ whereULk,t is the unexpected

load for regionk.

Given the definitions of the ground intensity process,λ j
g (t,y | Ht) in equation (1)

and the density for the marks,f (y | t,Ht) in equation (4), the log-likelihood func-

tion is

logL =
d

∑
j=1

�

T ×R

logλ j
g (s | Hs)N j (ds×dl)

+
d

∑
j=1

�

T ×R

log f j(l | s,Hs)N j (ds×dy)−
d

∑
j=1

Λ j (T ) , (7)

whereΛ j (T ) =
� T

0 λ j
g (s | Hs)ds defines the compensator for allj ∈ {1, . . . ,d}.
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4. Modelling Load

In order to obtain a series for unexpected load it is necessary to build a model for

forecasting load. Building a complete forecasting model for load is well beyond

the scope of this paper and is indeed a major undertaking in its own right. What is

required here is a simple benchmark model that does an acceptable job of capturing

the major features of the load profile and is easy to forecast.Since load exhibits

strong seasonal and diurnal patterns a simple forecasting model that takes account

of these features is sufficient for the purposes of the current study. Despite the

simplicity of the model it has been shown to produce very accurate load forecasts,

at least for the Queensland region of the NEM. The model is fully explained in

Clements, Hurn and Li, (2015).

A model structure that captures half-hourly variability inload while respecting the

well-known features of the load profile is one in which each half hour is modelled

separately. Let the logarithm of the load at half hourh and dayd be given byLhd ,

then, the ARMA structure of the prototype model for a given half hour period is

Lhd =θh0+θh1Lhd−1+θh2Lhd−7+φh1εhd−1+φh2εhd−7+ εhd ,

in which h = 1, · · · ,48 andεhd is the disturbance term. So for each half-hour,h,

the parameters are estimated based on a subset of the data which only contains the

observations at that interval. In this way, the partial correlation between load and

lagged load is allowed to differ in a daily pattern by the different parameter values

across equations. A minimal lag structure requiresLhd to be explained by load in

the same half hour on the previous day,Lhd−1 and the load in the same half hour of

the same day in the previous week,Lhd−7. For the same reasoning, the unexpected

changes in load in the same half hour on the previous day,εhd−1 and the previous

week,εhd−7, are included.

There are three important improvements that can be made to this prototype model.

(i) In order to allow for the coefficients on one-day lagged load to differentiate

between days, the one-day lagged load,Lhd−1, is interacted with day-of-the-

week dummy variables,Wd p, p = 1, · · · ,7. Attempts to reduce the number

of dummy variables in the specification, for example by usingone for week-

14



days and one for weekends, or defining the dummy variables in terms of

whether the day before and after is a weekday or in weekend, produced in-

ferior results.

(ii) It is reasonable to posit that the load in consecutive half hours will be corre-

lated so that in addition to observed load in last half-hour period of the day

prior to the making a forecast,L48d−1, each equation should also contain

the lagged load from the immediately preceding half hour,Lh−1d . Addi-

tional lags of consecutive half-hour periods were tried butthe improvement

in forecast performance was minimal.

(iii) An annual pattern in the load in all the regions of the NEM is allowed for by

specifying Fourier polynomials with annual cycles interacted with the one-

week lagged load,Lhd−7. The degree of the Fourier polynomials in the series

expansion is four. While this choice is not tested formally,experimentation

showed that little is to be gained by increasing the degree ofthe polynomials.

Consequently, the preferred multiple equation time seriesmodel used for forecast-

ing load is

Lhd =θh0+θhd 1Lhd−1+θhd 2Lhd−7+θh4L48d−1+θh5Ih>1Lh−1d

+φh1εhd−1+φh2εhd−7+ εhd , (8)

in which

θhd 1 =
7

∑
p=1

ηh pWd p ,

θhd 2 =τh1+
4

∑
q=1

[

τh2q sin
(

2qπ
( hd

17472

))

+ τh3q cos
(

2qπ
( hd

17472

))]

,

andIh>1 denotes an indicator function which is equal to 1 whenh > 1 and 0 oth-

erwise. This modification turns the 48 equations for the halfhours of a day into

a recursive system. Once again, repeated application of ordinary least squares

can be used to estimate the system, it provides a parsimonious way of capturing

the intra-day load correlation without increasing computational complexity signif-

icantly. Experimentation indicates that the more efficientestimation method with

taking into account of intra-day error correlation does notgenerally improve fore-
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cast accuracy.

There is some evidence in the literature to suggest that the response of load to tem-

perature is nonlinear in nature and the challenge is to modelthis nonlinear response

but at the same time maintain a model specification that is linear in parameters.

Clements et al. (2015) use a flexible spline method to providea piecewise linear

specification in temperature. The advantages of including the temperature variables

are marginal even when actual rather than forecast temperature values are used, at

least for the Queensland region. The reason for this is that actual load varies quite

widely for any given temperature due mainly to the fact that the temperature record

is a non-representative one because it is taken at a specific location and then used as

a proxy for the temperature in the entire region. This is a questionable assumption

given the size of the regions of the NEM.

In this section, the forecast performance of the preferred model in (8) is compared

against the industry standard reported by the market operator AEMO. AEMO as

the operator of the NEM, provides short-term load forecastsin pre-dispatch IS

reports for the next trading day.4 Among the horizons of the load forecast, 12-

hour ahead forecasts provide important information for dispatch planning for the

next day. To monitor 12-hour ahead load forecast accuracy, the monthly averaged

MAPE of the 12-hour ahead forecasts is reported by AEMO as a benchmark for

assessing forecast performance.5 Although the details of the specification of the

AEMO forecasting procedure are not available, it is the mainforecasting model

chosen by the market operator and may therefore be taken to berepresentative of

the state of art in terms of load forecasting models. Given the limited historical

data publicly available from AEMO with respect to their published load forecasts,

the period from July 2012 to November 2013 is used for subsequent comparison.

A comparison of the performance of the preferred multiple equation model (with

and without temperature variables) shown in Table 2

4See,http://www.nemweb.
om.au/REPORTS/CURRENT/PreDispat
hIS_Reports/.
5See,http://www.aemo.
om.au/Ele
tri
ity/Data/PreDispat
h-Demand-Fore
asting-Performan
e
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Table 2: Summary comparison of 12-hour ahead forecast by equation (8) and the AEMO forecasts
for the period from July 2012 to November 2013. The † symbol indicates that the forecast was
generated using actual temperature data and the flexible spline procedure described in Clements et
al. (2015).

Eq. (8)† Eq. (8) AEMO

Overall MAPE 1.21% 1.37% 1.88%
Max. APE 20.21% 20.26% -
No. APE≥ 5% 384 585 -
No. APE≥ 10% 38 44 -
No. APE≥ 15% 7 7 -
No. APE≥ 25% 0 0 -
Max. monthly MAPE 1.84% 2.02% 3.2%
Obs. 24864 24864 -

Although this period is only 17 months, the advantage of the proposed model is

shown clearly in Table 2, with the monthly MAPEs well below the AEMO fore-

casts and an improvement of around 0.67% in the overall MAPE over the AMEO

forecasts. Since AEMO forecasts are based on temperature forecasts instead of

real temperature, the results from the proposed model obtained by omitting the

variables for current temperature are also reported. Whilethere is a fall in ac-

curacy relative to the situation when actual temperature isused, this effect is very

small and the model is still more accurate than the AEMO forecast under all criteria

(0.51% lower in the overall MAPE).

5. Estimation Results

Table 3 reports the parameter estimates and standard errorsfor the three models,

namely, the bivariate QLD-NSW model, the bivariate NSW-VICmodel and the

QLD-NSW-VIC model. The interpretation of the parameters ofthe models re-

ported in Table 3 is made easier by recognising that the parameters are indexed by

up to three indices,m = 1,2,3 for three models,j = 1,2,3 for the regions QLD,

NSW and VIC, respectively, andk is either a dummy index for the repetition of the

j index or represents the number of explanatory variables in equation. It is useful

to bear in mind the interpretations of the parameters of the model.

(i) The parametersµm j are the constant terms in the intensity equation (3).
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(ii) The parametersηm jk summarise the self- and cross-excitation properties of

the model in the intensity equation (3). Whenj = k the parameter is a self-

excitation parameter and whenj 6= k the term captures a cross-excitation

effect.

(iii) The parametersαm j are the estimated rates of exponential decay of the in-

tensity equation (3).

(iv) The parametersbm j andcm j are coefficients of the impact function in equa-

tion (5) which control the shock to intensity conditional onthe size of a

spike.

(iv) The parametersξm j are the shape parameters of the of GPD distribution.

(vi) The parametersβm jk with k = 0,1,2,3 are parameters relating to the scale

of the GPD function in equation (6). The parametersβmk0 are the constant

terms. Ifk > 0 and j = k thenβm jk are the coefficients on unexpected load.

If k > 0 and j 6= k thenβm jk are on excess capacity.

As a further aid to the interpretation of the results in Table3, the coefficients gov-

erning the self-excitation of the intensity of the SEMPP arecoloured grey, as are

the coefficients governing the effect of unexpected load on the scale of the GPD

distribution.

In all regions and for all models, the coefficientsηm jk with j = k (coloured grey)

relating to the self-excitation of the SEMPP are statistically significant. This result

confirms that there is clustering in the occurrence of extreme price events in all re-

gions of the NEM. Furthermore, in all but one case (η121 in the QLD-NSW model)

the coefficient estimates on the cross excitation terms are positive and significant.

This indicates that the occurrence of a spike in one region will increase the chance

of a spike in the neighbouring regions. While the results arenot reported here,

restricted models with no cross excitation are also estimated. For all three models,

the value of the log-likelihood function is significantly reduced.6

6The restricted and unrestricted values of the log-likelihood functions, respectively, are
−17831.18 to−17927.50 for QLD-NSW,−5116.16 to−5135.15 for NSW-VIC and−8460.076
to−8568.90 for the three region model.
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Unrestricted Hawkes QLD-NSW Unrestricted Hawkes VIC-NSW Unrestricted Hawkes QLD-NSW-VIC
QLD NSW VIC NSW QLD NSW VIC

j m=1,j=1 m=1, j=2 m=2,j=1 m=2,j=2 m=3,j=1 m=3,j=2 m=3,j=3

λ
j g
(t
|
H

t)

µm j 0.0031 (0.0002) 0.0030 (0.0002) 0.0016 (0.0001) 0.0017 (0.0002) µm j 0.0024 (0.0002) 0.0017 (0.0001) 0.0016 (0.0001)
ηm j1 0.6672 (0.0235) 0.0095 (0.0060) 0.6558 (0.0475) 0.0402 (0.0128)ηm j1 0.5732 (0.0633) 0.0109 (0.0072)
ηm j2 0.1565 (0.0170) 0.8308 (0.0187) 0.0307 (0.0091) 0.7545 (0.0368) ηm j2 0.1685 (0.0272) 0.7916 (0.0335) 0.0344 (0.0099)
ηm j3 ηm j3 0.0377 (0.0121) 0.6503 (0.0477)
αm j 0.3758 (0.0145) 0.4049 (0.0129) 0.4402 (0.0310) 0.4897 (0.0262) αm j 0.4267 (0.0255) 0.4895 (0.0242) 0.4438 (0.0311)
bm j 0.7205 (0.1827) 0.8075 (0.1493) 0.4248 (0.2269) 0.4975 (0.1930) bm j 0.7599 (0.3721) 0.1347 (0.0668) 0.4229 (0.2264)
cm j -0.1614 (0.0439) -0.1579 (0.0351) -0.0804 (0.0503) -0.0924 (0.0418) cm j -0.1760 (0.0931) -0.0008 (0.0037) -0.0796 (0.0502)

f j
(y

|t
,H

t) ξm j 0.2207 (0.0246) 0.0919 (0.0186) 0.3509 (0.0477) 0.1804 (0.0404) ξm j 0.2681 (0.0656) 0.1554 (0.0392) 0.3523 (0.0479)
β j0 -0.5183 (0.0406) -0.4431 (0.0379) -0.4165 (0.1089) -0.2933 (0.0908) βm j0 -0.4733 (0.0968) 0.0158 (0.1024) -0.4172 (0.1093)

βm j1 0.8966 (0.1493) -1.9322 (0.1288) 0.4949 (0.1766) -2.1335 (0.1876) β j1 0.2410 (0.2594) -2.2008 (0.3099)
βm j2 -1.0020 (0.1260) 1.7309 (0.1199) -2.3420 (0.2683) 1.2445 (0.2363) βm j2 -0.2246 (0.3559) 0.8048 (0.2558) -2.3162 (0.2684)
βm j3 βm j3 -2.0290 (0.1943) 0.4902 (0.1782)

Table 3: Estimated maximum likelihood parameters for the unrestricted Hawkes models in the period 1 January 2005 to 31 December 2012, for the pair
QLD-NSW and from 1 July 2008 to 31 December 2012 for the pair VIC-NSW. Figures in parentheses are standard errors. The coefficients governing
the self-excitation of the intensity of the SEMPP are coloured grey, as are the coefficients governing the effect of unexpected load on the scale of the
GPD distribution. The log-likelihood value for the QLD-NSWmodel is -17831.18 and for the VIC-NSW model is -5116.16. In the three region model,
the sample is from 1 July 2008 to 31 December 2012 and the log-likelihood value is -8460.076. The estimation was conductedon log-prices which
simplifies the estimation process.
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The results in Table 3 indicate that the size of the spikes aresignificantly related to

both excess capacity and unexpected load. The positive estimates ofβm jk, which

are coloured in grey, indicate that the unexpected load shocks have a significant

positive impact on the size of price spikes, through their effect on the scale coef-

ficient in equation (6). The single exception is the estimatefor QLD in the three

region model,β311, which is positive but not significant. Significant negativeesti-

mates forβm jk when j 6= k are as expected: the greater the excess capacity on an

interconnector into a region, the smaller the expected sizeof the spike.

The robust conclusion to emerge from Table 3 is that inter-regional influences mat-

ter. Not only is cross-excitation in the intensity important, but the flow of electricity

across regional boundaries via the interconnectors is alsoa significant factor in de-

termining the expected size of price spikes. It is clear thata multivariate framework

should be preferred to a univariate one when modelling spikes in electricity prices.

Figure 3 plots the impact functions,φk(y) for the bivariate QLD-NSW model.

These surfaces reveal the impact on intensity of the size of the event (y) and the

observed covariates through the scale parametersσk(t) in equation (6),given that

a price spike has occurred. It appears that as the scale coefficient increases (due

to either higher unexpected load and/or lower excess capacity) there is a general

increase in the value of the impact function. The influence ofthe size of a price

spike (marks), on the other hand appears to be quadratic. Onepossible explanation

to this nonlinear effect is the phenomenon of rebidding by base load generators.

For larger spikes there is a strategic incentive for generators to rebid generation ca-

pacity at the market floor price in order to ensure their bids are dispatched (see, for

example, Hurn, Silvennoinen and Teräsvirta, 2015). This extra capacity can have

a calming impact on the intensity of further spikes becomes smaller as the size of

the price spike grows. Results for the impact functions for the bivariate NSW-VIC

model are identical in nature and not reported here.

Figure 4 shows the impact functions from the three-region model. Interestingly,

the estimates ofφk(y) for QLD and VIC are the same as those obtained from the

bivariate models, but the pattern for NSW is different. The effect of the scale

coefficient is slightly negative and very small, a result which is probably due to

the interaction of two excess capacities from the other two regions. The effect of
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Figure 3: Impact functionφk(y) as a function of both the size of the marks,y, and scale parameter
σk(t) for the bivariate QLD-NSW model. The QLD function is in the left panel and the NSW function
is in the right panel.

the size of the spike on intensity is monotonically increasing, though the effect is

smaller than in either of the bivariate models.
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Figure 4: Impact functionφk(y) as a function of both the size of the marks,y, and scale parameter
σk(t) for the QLD-NSW-VIC model. The impact functions for QLD, NSWand VIC are shown in
the left, centre and right panels, respectively.

A common approach to gauge the goodness of fit of a Hawkes modelis by means

of the residual analysis proposed by Ogata (1988). The idea is to obtain the residual

process of the model through the compensator

τ j
i+1 = Λ j

(

t j
i , t

j
i+1

)

=

� t j
i+1

t j
i

λ j
g (s | Hs)ds
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for each dimensionj ∈ {1, . . . ,d}. According to the time change property for a

point process, the residual{τ j
i } should closely resemble a realisation of a unit

rate Poisson process if the model is well defined. If this property is satisfied, the

exceedence times of the process will be exponentially distributed with unit rate.
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Figure 5: Goodness of fit in-sample: QQ-plots of the residualprocess for the bivariate QLD-NSW
Hawkes model. Results for QLD in the left panel and NSW in the right panel.
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Figure 6: Goodness of fit in-sample: QQ-plots of the residualprocess for the three region Hawkes
model. Results for QLD in the left panel, NSW in the centre panel and VIC in the right panel.

Figure 5 displays the QQ-plots realisations for the residual process for both regions

in the QLD-NSW bivariate model against an exponential distribution. Clearly the

model captures the clustering in spikes well for both regions because the residuals

are consistent with the exponential distribution. This result is also true for the three-

region model shown in Figure 6 and for the NSW-VIC bivariate model, which is
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not reported.

6. Forecast Accuracy

The results in Section 5 show that inter-regional linkages lead to a superior in-

sample fit for the SEMPP model. The task of this section is to determine whether or

not they lead to superior forecasts. Providing a standard benchmark model against

which to measure performance is not entirely straightforward, simply because there

is no existing method that deals with both the intensity and the size of the spike,

while also being generalisable to many regions. An early adaptation of the Au-

toregressive Conditional Hazard (ACH) model developed by Hamilton and Jordà

(2002) to electricity prices (Christensen et al., 2012), which models both the oc-

currence of the event and the size of the event (marks), cannot be generalised to

the multivariate setting. The same is true for the duration based ACD-Peaks Over

Threshold approach of Herrera and Gonzalez (2014). The dynamic logit frame-

work used by Eichler et al. (2013) is potentially generalisable to the multivariate

setting, but it cannot deal with marked point processes. Given the lack of a direct

competitor, the importance of the inter-regional links in predicting the intensity

of future spikes is assessed by comparing the Hawkes models to their restricted

counterparts in which all cross-excitation terms are set tozero,ηm jk = 0 for j 6= k.

Where appropriate the results will also be related to those reported by Christensen

et al. (2012) and Clements et al. (2013).

Forecasts of the intensity from the restricted and unrestricted models are based on

the history of spike times, but both use covariates from the next half hour forecast

period to determine the expected size of a spike so that no stance is taken here

on a forecasting model for the covariates. Forecasting performance is assessed by

using the parameters of the models estimated in-sample. These estimates are then

used to provide half-hour ahead forecasts for the period 1 January 00:00 to 31 July

23:30 2013. Although new observations are available every half-hour, the model

is not re-estimated because this proved to be too computationally expensive. The

forecast analysis is based on the one-step-ahead probability of an event occurring

at timet +1 instead the conditional intensity. This probability can be obtained for
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each regionj through the intensity measure as follows:

P
{

N j (t +1)−N j (t) = 1 | Ht
}

= 1−exp(−Λ j ([t, t +1)× (y,∞)))

where

Λ j ([t, t +1)× (y,∞)) =

� t+1

t

� ∞

y
λ j(s, l | Hs)

defines the intensity measure. Solving this integral we havethat

Λ j ([t, t +1)× (y,∞)) = λ j
g (t +1 | Ht+1)Fj(y | t +1,Ht+1),

whereFj is the cumulative distribution function for the GPD defined in equation

4. Figure 7 displays the probability forecasts for price spikes from the unrestricted

three region Hawkes model and shows, informally, that the model does a good job

of forecasting spikes and adapts relatively well to clusters of spike events.
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Figure 7: Half-hourly step-ahead probability forecasts from the unrestricted three region Hawkes
model for the period 1 January 00:00 hrs to 31 July 23:30 hrs 2013. Price spikesPt higher than
AUS$ 100/MWh are displayed with a gray vertical bar. The top panel shows results for QLD, middle
panel NSW and bottom panel VIC.Λ j := Λ j ([t, t +1)× (y,∞)) defines the intensity measure for the
region j.

A formal evaluation of forecast accuracy follows the procedure of Christensen et al.
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(2012) and assumes that extreme events are correctly forecast if a spike occurs at

time t + 1 and the probability of this event is higher than 0.5. On the contrary,

a false alarm occurs if an event does not occur at timet + 1 but the probability

forecast is higher than 0.5. The choice of 0.5 as the probability cutoff is essentially

arbitrary. A lower threshold improves the percentage of correct forecasts but also

increases the probability of false alarms.

Table 4 reports the probability forecasts results from boththe restricted and unre-

stricted bivariate models for the QLD-NSW model. Price spikes as classified as

mild if $100≥ Pt ≤ $300, and severe if $300≥ Pt ≤ $12500, where all prices are

per MWh. For both regions, the general unrestricted bivariate Hawkes model gives

the best forecasting results. In QLD, a large number of pricespikes occurred dur-

ing the forecast period. During this time, the unrestrictedmodel correctly forecast

60% of overall spikes (66% for mild and 34% of severe spikes) with a false de-

tection rate of 32%. In comparison, the restricted model correctly forecast spikes

at a rate of only 42% with false detection at 57%. Many fewer spikes (only much

smaller spikes) occur in NSW during the forecast period. Therestricted model in

fact performs slightly better in this region. Of co-spikes (simultaneous events in

both regions), the unrestricted model accurately predicts29% of their occurrence

and produces 10% false alarms. Given the threshold of 0.5, 26% of first spikes in

QLD can be correctly forecast, 13% of first spikes in VIC and only 6% in NSW.

This result is consistent in that spikes in NSW are fewer and smaller during the

forecast period and hence are more difficult to predict.

Table 5 reports the equivalent results for the bivariate NSW-VIC model. Results for

NSW from the unrestricted model are virtually identical to those from the QLD-

NSW model, with the restricted model being less accurate in this case. For the

VIC region, the unrestricted model correctly forecasts 45%of overall spikes (45%

for mild and only 1 of 13 severe spikes) with a false detectionrate of only 13%.

Results for the three region model are not included as they are very similar to those

from the bivariate models with only slight reductions in accuracy. This result is of

little surprise given the shorter sample period along with an increase in the number

of parameters to be estimated increases leading to greater estimation uncertainty.

Overall is appears that the inclusion of inter-regional linkages in the model is the
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most important single factor that improves forecast performance.

Region Model Event Classification
Types of Events

Mild Severe All

QLD

True N° 594 153 747

Hawkes
Correct 394 52 446
False alarms 237

Restricted Hawkes
Correct 278 32 310
False alarms 427

NSW

True N° 84 0 84

Hawkes
Correct 34 0 34
False alarms 39

Restricted Hawkes
Correct 14 0 14
False alarms 26
True N° co-spikes 72 0 72

QLD - NSW
Hawkes

Correct 21
False alarms 7

Table 4: Results of the half-hourly step-ahead probabilityforecasts for the regions QLD NSW, during
the period 1 January 00:00 hrs to 31 July 23:30 hrs 2013. The price spikesPt are classified in mild if
$100≥ Pt ≤ $300, and severe if $300≤ Pt ≥ $12500 where all prices are per MWh. The estimation
sample is 1 January 2005 to 31 December 2013.

In terms of the accuracy of probability forecasts, the results from the SEMPP mod-

els are superior to those of Christensen et al. (2012, Table 5). Not only is the

percentage of correct forecasts at least as good as the ACH model forecasts, the

SEMPP model is vastly superior in terms of the prediction of the size of the marks.

In fact, the ACH model proved incapable of accurately picking any severe events at

all in 3 of the 4 regions of the NEM considered. The semi-parametric approach of

Clements et al. (2013) provides a solid forecasting performance for spikes, which

gives superior accuracy (around 70-75%) to the results reported here. Note, how-

ever, that these results are not directly comparable to those of the SEMPP because

they refer to different sample periods and the semi-parametric model is only capa-

ble of predicting the occurrence of an event and not its mark.

A final point about the forecasts concerns the ability of the model to pick the first

spike in a cluster correctly. The results show that 26% of first spikes in QLD can

be correctly forecast, 13% of first spikes in VIC but only 6% inNSW if a threshold

probability of 0.5 is adopted. NSW is clearly a problem area here but, as we em-
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Region Model Event Classification
Types of Events

Mild Severe All

VIC

True N° 155 13 169

Hawkes
Correct 75 1 76
False alarms 22

Restricted Hawkes
Correct 53 1 54
False alarms 46

NSW

True N° 84 0 84

Hawkes
Correct 35 0 35
False alarms 39

Restricted Hawkes
Correct 18 0 18
False alarms 38
True N° co-spikes 65 0 65

NSW - VIC
Hawkes

Correct 29
False alarms 11

Table 5: Results of the half-hourly step-ahead probabilityforecast for the regions VIC and NSW,
during the period 1 January 00:00 hrs to 31 July 23:30 hrs 2013. The price spikesPt are classified
in mild if AUS$ 100/MWh< Pt <AUS$ 300/MWh, and severe if AUS$ 300/MWh≤ Pt ≤AUS$
12500/MWh. Model estimation is based on the sample, July 1, 2008 to December 31, 2012.

phasise in the paper, the sample period we deal with shows very few spikes in NSW

during the forecast period making them particularly difficult to model. While these

numbers may appear on the low side, they are actually quite respectable in terms

of the published literature. Given the asymmetric nature ofthe loss involved when

failing to predict a spike, Clements et al. (2013) suggest a simple rule for vary-

ing the threshold to obtain better predictions, specifically, they suggest that using a

threshold of 0.1 for predicting the first spike, followed by raising the threshold to

0.75 for subsequent spikes gives the best forecast performance. The percentage of

first spikes correctly forecast using this rule reported by Clements et al. (2013) are

32.7%, 11.4%, and 20.8% of the first spikes for NSW, QLD and VICrespectively.

This avenue of inquiry has not been pursued here.

A different approach to measuring the forecast accuracy of the models is by means

of estimating Value at Risk (VaR) for different levels of confidence. In a traditional

finance setting, Value-at-Risk (VaR) represents a dollar loss amount that we are

95% confident will not be exceeded in a particular period (where, for the sake of

transparency, a conventional confidence level is assumed).A related measure of
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risk is Expected Shortfall (ES) which represents the size ofthe expected loss given

that the VaR has been exceeded. In the context in which it is used in this paper, VaR

measures the level of price that we are 95% confident will not be exceeded in a par-

ticular period, specifically the next half hour. ES then measures the expected level

of price in a half hour period in which the VaR level of price has been exceeded.

These risk estimates allow market participants to gain an understanding of their

cashflow risks (either costs or revenues) as a result of abnormally high wholesale

prices. Chavez-Demoulin and McGill (2012) shows that for the j-th dimension of

a Hawkes POT model, the conditional VaR for a confidence levelα is

VaRt+1
j,α = u j +

σ j(t)
ξ j





(

1−α
λ j

g (t | Ht)

)ξ j

−1



 ,

while the associated conditional Expected Shortfall (ES) is calculated as

ES t+1
j,α =

VaRt+1
j,α +σ j(t)−ξ ju j

1−ξ j
.

In order to determine the accuracy of VaR estimates, a range of statistical tests are

applied. A detailed explanation of each test is outside the scope of this paper, how-

ever, they are common in the literature relating to VaR estimation, and a description

of each of test can be found in Herrera (2013). An important concept used in the

construction of these tests is that of anexception, which is defined as a price spike

whose value exceeds the estimated VaR,

It (α) =







1 if Pt >VaRt+1
α

0 otherwise.

Four tests to measure the accuracy of the VaR estimates are employed. The first

three tests correspond to Likelihood-Ratio (LR) tests introduced by Christoffersen

(1998). The first is an unconditional coverage test (LRuc) to measure whether the

fraction of exceptions obtained for the VaR is indeed its expected value. The sec-

ond corresponds to a test of independence (LRind) to test independence among the

exceptions. The third is the conditional coverage test (LRcc), which is a combina-

tion of the last two tests to determine independence and correct coverage. Finally,
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Regions QLD NSW VIC NSW
α 0.995 0.999 0.9995 0.995 0.999 0.9995 0.995 0.999 0.9995 0.995 0.999 0.9995

Hawkes Model
Exc.(%) 0.56 0.18 0.09 0.34 0.05 0.02 0.52 0.10 0.03 0.4 0.16 0.04
LRuc 0.33 0.02 0.06 0.02 0.06 0.11 0.71 0.87 0.29 0.14 0.06 0.57
LRind 0.42 0.79 0.89 0.12 0.94 0.98 0.29 0.88 0.97 0.01 0.81 0.96
LRcc 0.45 0.05 0.17 0.02 0.18 0.28 0.54 0.98 0.57 0.01 0.18 0.85
DQ 0.42 0.79 0.89 0.12 0.94 0.98 0.29 0.88 0.97 0.01 0.81 0.96

Restricted Hawkes Model
Exc.(%) 0.47 0.18 0.09 0.43 0.21 0.1 0.57 0.08 0.03 0.4 0.1 0.09
LRuc 0.75 0.02 0.14 0.30 0.00 0.03 0.30 0.43 0.29 0.14 0.87 0.14
LRind 0.49 0.79 0.90 0.02 0.76 0.88 0.00 0.91 0.97 0.56 0.88 0.90
LRcc 0.75 0.06 0.33 0.03 0.01 0.09 0.01 0.72 0.57 0.28 0.98 0.33
DQ 0.49 0.79 0.90 0.02 0.76 0.88 0.00 0.91 0.97 0.56 0.88 0.90

Table 6: Predictive performance for forecasting of the bivariate models based on the accuracy of the
VaR estimates. Entries in the rows are the significance levels (p-values) of the respective tests, with
exception of the confidence level for the VaR (α), and the percentage of exceptions (Exc. (%)). For
the pair QLD - NSW we use the long sample, while for the pair VIC- NSW the short sample.

the Dynamic Quantile test (DQ) proposed by Engle and Manganelli (2004) is also

employed. The idea of theDQ test, is to capture the possible dependence among

the exceptions.

The tests are conducted at different confidence levels, withthe lowest being 0.995.

This is because the threshold selected to define a spike, $100/MWh, is equivalent

to a quantile of 0.992 for events in NSW, 0.929 in QLD and 0.985in VIC. Re-

sults are shown in terms ofp−values, only for confidence levels over the higher of

the two levels across the regions, to make the results comparable over time. Table

6 reports the results of these tests for both the restricted and unrestricted bivariate

models for QLD-NSW and NSW-VIC. Overall, across all regions, all tests and lev-

els of significanceα , the forecasts from the unrestricted models produce slightly

fewer rejections, six against ten from the restricted models. The extra rejections

are evenly spread across the different tests. For both models, most of the rejections

occur from forecasts in NSW, which is unsurprising given thelack of large spikes

during the forecast period. In terms of QLD forecasts, thereis little distinguish be-

tween the restricted and unrestricted models. In VIC, the unrestricted model fails

to adequately forecast the VaR at the lowest level of significanceα = 0.995. The

same patterns are evident in the VaR forecasts from the threeregion model. While

there are not great differences here in terms of VaR forecastaccuracy between the

restricted and unrestricted models, when considering the superiority of the unre-

stricted model in terms of forecasting spike probabilities, overall the importance of
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the unrestricted model and the interregional links is evident.
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Figure 8: Graphical description of the ES (α = 0.995 andα = 0.9995 in the left and right columns)
as a function of the covariates for the regions of QLD (top panel) and NSW (bottom panel). Observe
that the Unexpected load has a positive impact, while the Excess capacity of other region has a
negative impact in the estimated ES value.

It is also possible to represent graphically the impact of the covariates on ES at

a given confidence level. This occurs through impact of the covariates, namely

unexpected load (UC) and excess interconnector capacity (EC), on the scale pa-

rameterσk(t) in the density for the marks. Figure 8 shows a graphical description

of the risk in terms of ES as a function of covariates for the regions of QLD (top

panel) and NSW (bottom panel) atα = 0.995 andα = 0.9995 in the left and right

columns respectively. Consistent with the parameter estimates, unexpected load

has a positive impact, while the excess capacity into each region has a negative

impact in the scale specification, and therefore, on the finalES value. The levels of

ES become larger moving to the higher levels of confidence. Plots for NSW-VIC

are identical in nature and are omitted here.
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7. Conclusion

Price spikes in wholesale electricity prices pose a great risk to market participants

and accurate forecasting of these events is needed in order to aid the task of manag-

ing price risk. The existing literature has modelled the occurrence of price spikes in

a univariate framework which confines attention to individual market regions. This

paper uses a multivariate point process to model the occurrence and size of extreme

price events and in so doing highlights the effect of physical infrastructure on the

transmission of price spikes in interconnected regions of the Australian electric-

ity market. This multivariate approach leads to improved in-sample fit, forecasts

and estimates of risk measures such as value-at-risk and expected shortfall. Al-

though the results generated by the multivariate self-exciting point process model

are promising, a limitation of this study is that there is no simple competitor against

which to benchmark the results. An important area of future research will therefore

be to place these results in a broader context by developing competing models that

allow multivariate transmission of price spikes.
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